СПОСОБЫ УПРОЧНЕНИЯ МАТЕРИАЛОВ

Рассмотренный ранее механизм пластической деформации позволяет сделать вывод что процесс сдвига в кристаллах под действием внешних напряжений будет происходить тем легче чем больше дислокаций будет в металле. После пластической деформации дислокационная плотность увеличивается и достигает значении...

2015-01-27

262.12 KB

35 чел.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


                                 ЛЕКЦИЯ 5

          СПОСОБЫ  УПРОЧНЕНИЯ МАТЕРИАЛОВ

    Ранее были рассмотрены механические свойства металлов и сплавов. Основным свойством для машиностроительных материалов является прочность. Однако, уровень  прочности материалов в исходном состоянии не всегда соответствует требуемым значениям.

    В этом случае необходимо повысить характеристики прочности для данного сплава, используя один из способов упрочнения.

    К способам упрочнения относятся:

  1.  Холодная пластическая деформация (ХПД).
  2.  Термическая обработка.
  3.  Легирование (введение в состав сплава дополнительных химических элементов).
  4.  Химико-термическая обработка (упрочнение поверхностных слоев металла и деталей малых сечений).
  5.  Механо-термическая обработка (сочетание механической и термической обработки).

УПРОЧНЕНИЕ МЕТОДОМ ХОЛОДНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ

Рассмотренный ранее механизм пластической деформации, позволяет

сделать вывод, что процесс сдвига в кристаллах под действием внешних напряжений будет происходить тем легче, чем больше дислокаций будет в металле.

    После пластической деформации дислокационная плотность увеличивается и достигает значении 108 1010 см -2. При этом формируются дислокационные скопления: сплетения в виде клубков дислокаций. При увеличении степени деформации плотность дислокаций возрастает до 1011 – 1012 см -2.

Повышение прочности с возрастанием плотности дислокаций объясняется тем, что при этом возникают не только параллельные друг другу дислокации, но и дислокации в разных кристаллографических плоскостях и направлениях. Такие дислокации будут мешать друг другу перемещаться и реальная прочность металла повышается, так как замедляется движение дислокаций и уменьшается пластическая деформация.

    Упрочнение металла под действием пластической деформации называется наклепом.  С ростом степени деформации прочность и твердость повышаются, а способность к пластической деформации снижается (рис.5.1).

              

Рис.5.1. Изменение свойств металла с увеличением степени

                       деформации.

    Степень предварительной деформации определяется по характеристике ε и вычисляется как отношение разности толщин  заготовок до деформации (Н) и после деформации (h) к исходной толщине Н:

ε = [(H - h) / H] ∙ 100%.

Рост числа дислокаций и возникновение внутренних напряжений в результате наклепа приводит к тому, что свободная энергия металла растет, и он переходит в неравновесное, неустойчивое состояние. Нагрев металла должен способствовать возврату металла в более устойчивое исходное структурное состояние.

Уже при небольшом нагреве происходит снятие искажений кристаллической решетки, уменьшение плотности дислокаций, снижение внутренних напряжений. При этом видимых изменений структуры не наблюдается и вытянутая форма зерен сохраняется. Этот процесс называется возвратом. При возврате прочность уменьшается незначительно (на 20 - 30%), а пластичность несколько увеличивается.

С ростом температуры нагрева подвижность атомов растет, и образуются новые зерна вместо ориентированной волокнистой структуры. Образование и рост новых равноосных зерен называется рекристаллизацией.

Рис.5.2. Схема процесса рекристаллизации в деформированном

                      металле при нагреве.

Процесс рекристаллизации протекает в две стадии:

Первая стадия - рекристаллизация обработки - процесс образования новых зерен.

Вторая стадия - собирательная рекристаллизация - процесс роста вновь образованных рекристаллизованных зерен (рис.5.2).

Новые зерна возникают на границах старых зерен. Процесс первичной рекристаллизации термодинамически выгоден, так как при переходе деформированного металла в более устойчивое равновесное состояние сопровождается уменьшением свободной энергии.

Температура, при которой возникают новые зерна и изменяются механические свойства, называется температурой рекристаллизации (Тр).

Она зависит от температуры плавления.

Тр = а ∙ Тпл,

где а - коэффициент, зависящий от состава и структуры металла.

  •  для чистых металлов: Тр = 0,3 - 0,4 ∙ Тпл;
  •  для сплавов : Тр = 0,7 - 0,8 ∙ Тпл.

Изменение структуры и свойств деформированного металла при нагреве представлено на рис.5.3.

Рис. 5.3. Схема изменения структуры и свойств деформированного металла при нагреве:

1-2 – возврат; 2-3 – первичная кристаллизация; 3-4 – собирательная рекристаллизация

Таким образом, если необходимо снять наклеп, то следует провести нагрев деформированного металла при температуре выше, чем температура рекристаллизации.

Относительно температуры рекристаллизации различают холодную и горячую деформацию. Холодная деформация проводится при температурах ниже температуры рекристаллизации и является способом упрочнения металлов и сплавов. Горячая деформация проводится при температурах выше температуры рекристаллизации. Так, при механической обработке давлением имеют место два процесса: упрочнение за счет пластической деформации и последующее разупрочнение при рекристаллизации.



 

Другие похожие работы, которые могут вас заинтересовать.
15543. Современные методы экспериментального изучения строительных материалов. Определение предела прочности при сжатии. Рентгеновский фазовый анализ порошковых материалов 454.52 KB
  Мешалка для перемешивания цементного раствора, столик встряхивающий, форма-конус, штыковка, формы разъемные для изготовления образцов-балочек, насадка к формам, площадка вибрационная, прибор для испытаний на изгиб, пресс для определения предела прочности при сжатии, пластинки для передачи нагрузки по ГОСТ 310.4.
3320. Обсуждение составленных материалов по санпросветработе со школьниками. Коррекция материалов составленных студентами 13.12 KB
  Преподаватель знакомит студентов с целями и задачами предстоящего занятия. Затем каждый студент зачитывает текст беседы или лекции, которую он написал дома. После обсуждения преподаватель корректирует каждую беседу и лекцию, указывает на недостатки, если они есть, допущенные ошибки.
20016. Учёт материалов 42.24 KB
  Непрерывность производства требует чтобы постоянно находилось на складах достаточное количество сырья и материалов для полного удовлетворения потребностей производства в любой момент их использования. Целью и задачами работы выступает изучение бухгалтерского учета материалов. 1 Понятие и характеристика материалов Согласно Положению по бухгалтерскому учету Учет материально-производственных запасов ПБУ 5 011 к бухгалтерскому учету в качестве материально-производственных запасов принимаются активы1: используемые в качестве сырья материалов...
1984. Литье материалов 300.8 KB
  Исторически сложилось деление этих процессов на традиционные под которыми чаще всего подразумевают лишь литье в песчаноглинистые формы и все остальные – специальные технологии литья. Главным признаком традиционного метода литья можно считать важнейшие характеристики основного инструмента технологического процесса – литейной формы. Дополнительный обязательный признак – заполнение формы расплавом гравитационным методом сверху из ковша через литниковую систему. Остальные характеристики литейной формы объемная оболочковая опочная...
1512. Искусственная сушка материалов 136.65 KB
  Сушкой называется термический процесс удаления из твердых материалов или растворов содержащейся в них влаги путем ее испарения. При этом одно механическое обезвоживание материала в большинстве случаев является недостаточным так как оно обеспечивает только частичное удаление свободной влаги. Потому часто комбинируются различные способы удаления влаги. Естественная сушка обычно производится на открытом пространстве под навесами или в специальных сараях и представляет собой процесс при...
13428. Общая характеристика нагрева материалов 1.85 MB
  Общая характеристика нагревания лазерным излучением Рассмотрим тепловые эффекты в конденсированных средах и основные особенности температурной кинетики при лазерном воздействии. При рассмотрении процессов воздействия ЛИ на материалы необходимо знать энергетические характеристики: поглощенную долю падающего потока максимальную плотность мощности ЛИ длительность импульса длину волны пространственное распределение плотности мощности и условия фокусировки. Для описания тепловых источников при...
13489. Лазерное разрушение поглощающих материалов 380.35 KB
  Общая характеристика механизмов лазерного разрушения Термин разрушение при воздействии мощных потоков ЛИ на вещество является условным поскольку практически при любой плотности потока в объеме вещества происходят физические процессы вызывающие необратимые изменения связанные например с диффузией вещества или генерацией структурных несовершенств. Условимся понимать под разрушением материалов при воздействии ЛИ образование в веществе углублений вызванных выносом части объема вследствие процессов испарения. При превышении порогового...
6526. Основные задачи сопротивления материалов 178.81 KB
  Внешние силы вызывают деформацию тела т. К проявлению вязких свойств материала относится ползучесть рост деформации при постоянной нагрузки и релаксация уменьшение внутренних усилий при постоянной полной величине деформации. Пусть реальное твердое тело находится в равновесии под действием внешних...
13066. Технология обработки материалов давлением 6.37 MB
  Элементарный процесс ОМД можно представить в виде воздействия внешних сил на полуфабрикат заданной формы из металла или сплава для достижения требуемого конечного формообразования При этом деформируемый объем металла или сплава может находиться в различных состояниях пластичности в условиях холодного горячего деформирования; в режиме сверхпластичности или в условиях гидростатического давления. В свою очередь металлургические процессы предназначенные для формообразования полуфабрикатов в виде листа профилей труб и прутков из которых...
3820. Материаловедение(технология конструкционных материалов) 2.61 MB
  Стали: классификация автоматные стали. Углеродистые и легированные конструкционные стали; назначение термическая обработка свойства. Стали устойчивые против коррозии жаропрочные стали и сплавы. Инструментальные материалы: инструментальные и быстрорежущие стали твердые сплавы и режущая керамика сверхтвердые материалы материалы абразивных инструментов.
© "REFLEADER" http://refleader.ru/
Все права на сайт и размещенные работы
защищены законом об авторском праве.