Холодильная техника и технология продуктов питания

БОЛЬШАКОВ ХОЛОДИЛЬНАЯ ТЕХНИКА И ТЕХНОЛОГИЯ ПРОДУКТОВ ПИТАНИЯ УЧЕБНИК Рекомендовано Учебнометодическим объединением по образованию в области товароведения и экспертизы товаров в качестве учебника для студентов высших учебных заведений обучающихся по специальности 351100 Товароведение и экспертиза товаров по областям применения и другим технологическим специальностям пищевого профиля по дисциплине Холодильная техника и технология Москва CDEM 2003 Рецензенты: др техн. ISBN 5769512296 В учебнике содержатся сведения о назначении и...

2015-08-17

15.24 MB

93 чел.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


ВЫСШЕЕ   ОБРАЗОВАНИЕ

С.А.БОЛЬШАКОВ

ХОЛОДИЛЬНАЯ ТЕХНИКА

И ТЕХНОЛОГИЯ ПРОДУКТОВ

ПИТАНИЯ

УЧЕБНИК

Рекомендовано

Учебно-методическим объединением по образованию

в области товароведения и экспертизы товаров в качестве учебника

для студентов высших учебных заведений, обучающихся по специальности

351100 «Товароведение и экспертиза товаров» (по областям применения)

и другим технологическим специальностям пищевого профиля

по дисциплине «Холодильная техника и технология»

Москва

ACADEMA

2003

Рецензенты:

д-р техн. наук, профессор кафедры «Технологическое оборудование

и процессы отрасли» МГУПБ В. В. Илюхин; зам. директора ГНУ НИИПП и СПТ, канд. техн. наук В.Б.Пенпю

Большаков С. А.

Б 799 Холодильная техника и технология продуктов питания: Учебник для студ. высш. учеб. заведений / Сергей Алексеевич Большаков. — М.: Издательский центр «Академия», 2003. — 304 с.

ISBN 5-7695-1229-6

В учебнике содержатся сведения о назначении и устройстве холодильной техники, физических принципах получения низких температур, типах и циклах холодильных машин. Приведены основные и вспомогательные элементы холодильных установок. Даны теоретические основы холодильной технологии, методы расчета процессов холодильного консервирования, обработки и хранения сырья и продуктов питания. Рассмотрены проблемы изменений, происходящих при обработке, хранении, размораживании, транспортировании и реализации охлажденных и замороженных пищевых продуктов.

Для студентов высших учебных заведений. Может быть полезен слушателям институтов повышения квалификации, специалистам торговли и пищевой промышленности.

УДК621.56/.59

ББК31.392я73

Учебное издание

Большаков Сергей Алексеевич

Холодильная техника и технология продуктов питания

Учебник

Редактор О. Н. Кагановская. Технический редактор О. С. Александрова

Компьютерная верстка: Н. Е. Стаханова. Корректоры Л. А. Котова, Н. С. Потемкина

Изд. № A684-I/1. Подписано в печать 01.07.2003. Формат 60x90/16.

Гарнитура «Тайме». Печать офсетная. Бумага тип. № 2. Усл. печ. л. 19,0. Тираж 20000 экз. (1-й завод 1-5100 экз.). Заказ №12275.

Лицензия ИД № 02025 от 13.06.2000. Издательский центр «Академия».

Санитарно-эпидемиологическое заключение № 77.99.02.953.Д.003903.06.03 от 05.06.2003. 117342, Москва, ул. Бутлерова, 17-Б. к. 223. Тел./факс: (095)330-1092, 334-8337.

Отпечатано на Саратовском полиграфическом комбинате. 410004, г. Саратов, ул. Чернышевского, 59.

ISBN 5-7695-1229-6

Большаков С. А., 2003

Издательский центр «Академия», 2003

ВВЕДЕНИЕ

Природно-климатические условия России обусловливают сезонность производства продукции растениеводства и животноводства. Сохранение ее пищевой и биологической ценности в течение длительного периода возможно только с помощью консервирования. Выбор того или иного способа консервирования зависит от свойств продукта, возможностей поддержания его качеств и эффективности затрат на хранение.

Холодильное консервирование — эффективный способ обработки и хранения продуктов питания высокого качества. Не менее 40 % производимой в нашей стране сельскохозяйственной продукции подвергается холодильной обработке для предотвращения порчи и сокращения потерь. Воздействие холода по сравнению с другими методами консервирования вызывает минимальные изменения первоначальных свойств продукции.

Наиболее распространенный и экономичный способ холодильного консервирования - охлаждение, позволяющее полностью сохранить потребительские свойства. Однако срок хранения охлажденных пищевых продуктов ограничен. Это не позволяет создать достаточные их запасы и обеспечить непрерывное снабжение ими население.

Для увеличения продолжительности хранения продукты замораживают, что существенно тормозит скорость протекания процессов, влияющих на их качество. Замораживание и хранение в замороженном виде изменяют начальное качество продуктов, но позволяют сохранить их ценные свойства значительно дольше, чем охлажденных.

Характерной особенностью производства продуктов питания является то, что выработанная продукция необходима каждому из нас ежедневно. Перебои в снабжении населения продуктами питания отрицательно сказываются на всех сторонах жизни общества. Четкая работа пищевой промышленности немыслима без создания достаточных запасов сырья и готовой продукции, т.е. без холодильного консервирования.

Холодильная техника — это отрасль науки, исследующая и разрабатывающая различные способы получения искусственного холода, а также технические средства получения и применения холода.

Холодильная технология продуктов питания — отрасль науки, которая изучает рациональные и научно обоснованные способы использования холода в пищевой промышленности, решает задачи сохранения сырья и продуктов питания с помощью холода и применения его в их производстве.

Задачи холодильной технологии как науки следующие:

  •  изучение влияния холодильной обработки и хранения на пищевые продукты и определение оптимальных условий проведения технологических процессов (охлаждение, замораживание, хранение и др.) с учетом особенностей продуктов и свойственных им изменений;
  •  разработка научно обоснованных методов снижения потерь массы продуктов при холодильной обработке и хранении;
  •  совершенствование и создание новых технологий холодильной обработки и хранения совместно с другими методами консервирования, позволяющими минимизировать изменения свойств и потери массы продуктов.

Холодильная техника и холодильная технология базируются на знаниях из курсов термодинамики, механики, других наук физического цикла, биологии животных и растений, микробиологии, химии органических и неорганических соединений, биологической, коллоидной и физической химии.

Развитие холодильной техники и холодильной технологии как самостоятельных областей знаний началось с применения холода в пищевых отраслях промышленности и торговле. Искусственный холод для консервирования пищевых продуктов используется немногим более 100 лет. Первый крупный холодильник с машинным охлаждением был сооружен в Бостоне (США) в 1881 г. Первые холодильники в России построены в 1877 г. на рыбных промыслах Мурманского побережья, в 1888 г. — на промыслах в Астрахани, в Махачкале и других городах. Первый промышленный холодильник появился в 1895 г. в Белгороде, вместимость его составляла 250 т.

Начало исследованиям и научно-техническим разработкам в области холодильной техники и использования искусственного холода в пищевой технологии в России положил Ф.С.Касаткин в 1918 г. Были намечены основные направления новой отрасли прикладной науки — холодильной технологии и хранения продуктов питания. С 1926 г. в РЭА (МИНХ) им. Г. В. Плеханова велась систематическая подготовка специалистов высшей квалификации по холодильной технике и холодильной технологии пищевых продуктов.

Значительный вклад в развитие холодильной техники и технологии, систематизацию исследований и обобщение опыта работы холодильных предприятий внесли российские ученые М. В.Тухшнайд, Д.А.Христодуло, Я.Я. Никитинский, Д. Г. Рютов, Ф.В.Церевитинов, Н.А.Головкин, Г.Б.Чижов, Э.И.Каухчевили и др.

Сегодня в нашей стране создано развитое холодильное хозяйство. В пищевых отраслях промышленности и торговле продуктами питания функционируют около 3,3 тыс. холодильников общей вместимостью свыше 7 млн т, в том числе около 2 млн т для хранения фруктов и овощей. Постоянно ведется строительство специализированных холодильников в местах производства сельскохозяйственной продукции.

В России создана и действует непрерывная холодильная цепь, которая позволяет сохранить массу и качество продовольствия на всех этапах товародвижения — от сбора или производства до потребления. Применение искусственного холода, совершенствование технических средств и методов холодильной обработки и хранения сырья и продуктов способствуют снижению потерь, сохранению их биологической и пищевой ценности.

Технологические процессы на холодильниках требуют больших материальных и трудовых затрат, так как термическая обработка и хранение продовольствия связаны с производством и использованием холода, операциями по приему, внутрискладскому перемещению, складированию и выдаче продовольственных грузов. Это определяет межотраслевые связи холодильного хозяйства с холодильным машиностроением, приборостроением, химической промышленностью, другими отраслями.

Своеобразие холодильного хозяйства проистекает из разнообразия его звеньев, поскольку наряду с однородными предприятиями (распределительные холодильники) в него входят холодильники предприятий агропромышленного комплекса (мясной, молочной, рыбной, пищевой промышленности и сельского хозяйства) и потребкооперации. В оптовой и розничной торговле с помощью искусственного холода хранится и реализуется значительное количество пищевых продуктов. В то же время холодильное хозяйство — это единый организационно-хозяйственный комплекс, что обусловливается общностью задач всех его звеньев.

Холод широко используют не только в отраслях агропромышленного комплекса, на транспорте и в торговле, но и в других отраслях промышленности. Он применяется на предприятиях химической, горной, строительной, нефтеперерабатывающей, металлургической, текстильной, фармацевтической промышленности, машиностроения и др., в медицине, спорте, быту и т.д.

В учебнике «Холодильная техника и технология продуктов питания» рассматриваются физические основы и технические средства получения низких температур, устройство и теплотехнический расчет охлаждаемых сооружений, вопросы технической эксплуатации холодильников и холодильных установок, холодильная технология пищевых продуктов и использование холода в отраслях агропромышленного комплекса, торговле. Уделено внимание принципам построения единой непрерывной холодильной цепи.

В последнее десятилетие произошли значительные изменения в холодильном машиностроении, номенклатуре оборудования, типах машин и конструкциях теплообменных аппаратов. Претерпели эволюцию охлаждаемые сооружения, их теплоизоляционные конструкции, схемы автоматизации холодильных установок, схемы и средства механизации грузовых работ. В холодильном транспорте заметную роль стали играть изотермические и охлаждаемые контейнеры. Расширилось использование искусственного холода в различных отраслях промышленности страны, появились более совершенные установки для охлаждения и замораживания пищевых продуктов. Все эти изменения учтены в настоящем издании.

РАЗДЕЛ I 

ХОЛОДИЛЬНАЯ ТЕХНИКА

ГЛАВА 1

ФИЗИЧЕСКАЯ СУЩНОСТЬ И СПОСОБЫ

ПОЛУЧЕНИЯ ИСКУССТВЕННОГО ХОЛОДА

  1.  Физические процессы получения низких температур

Охлаждение — процесс понижения температуры тела. Для охлаждения нужно иметь два тела: охлаждаемое и охлаждающее — источник низкой температуры. Охлаждение продолжается, пока между телами происходит теплообмен. Источник низкой температуры должен функционировать постоянно, так как охлаждение следует осуществлять непрерывно. Это возможно при достаточно большом запасе охлаждающего вещества или если постоянно восстанавливается его первоначальное состояние. Последнее широко применяется в холодильной технике с использованием различных холодильных машин.

Различают естественное и искусственное охлаждение. При естественном охлаждении теплота от более нагретого тела переходит к менее нагретому (среде). Искусственное охлаждение предполагает получение температуры охлаждаемой среды ниже температуры окружающей среды. Низкие температуры получают путем физических процессов, при протекании которых происходит поглощение извне теплоты без повышения температуры тела.

К основным физическим процессам, сопровождающимся поглощением теплоты, относятся фазовые переходы вещества: плавление или таяние при переходе тела из твердого состояния в жидкое; испарение или кипение при переходе тела из жидкого состояния в парообразное; сублимация или возгонка при переходе тела из твердого состояния непосредственно в газообразное.

Искусственное охлаждение может быть основано и на других физических процессах, например адиабатическом дросселировании газа с начальной температурой меньшей, чем температура верхней точки инверсии; адиабатическом расширении газа с отдачей полезной внешней работы; вихревом эффекте.

Фазовый переход вещества при плавлении или таянии, испарении или кипении, сублимации или возгонке происходит при соответствующих температурах и давлениях с поглощением значительного количества теплоты.

Для получения низких температур (но не ниже 0°С) может быть применен водный лед, который в условиях атмосферного давления плавится при 0°С и имеет сравнительно большую величину удельной теплоты плавления — 335 кДж/кг. Если давление ниже атмосферного, сублимация водного льда происходит при температуре ниже 0°С, что используют в сублимационной сушке пищевых продуктов.

Более низкие температуры плавления можно получить, смешивая лед с некоторыми солями, например с хлоридом кальция (рис. 1).

                                           

Рис. 1. Диаграмма состояния системы

хлорид кальция - лед

Самая низкая температура плавления смеси хлорида кальция со льдом достигается в криогидратной (эвтектической) точке, которая равна -55 °С при массовой концентрации хлорида кальция ξ = 29,9 %. Источником низкой температуры может служить твердый диоксид углерода (сухой лед), имеющий при атмосферном давлении температуру сублимации -78,5 °С и удельную теплоту 574 кДж/кг.

Более широко распространено получение низких температур с использованием процесса кипения. С помощью одного вещества можно получить определенный интервал температур, поскольку температура его кипения зависит от давления: с уменьшением давления температура кипения понижается, и наоборот. С помощью различных веществ можно получать низкие температуры в широком диапазоне. Процесс испарения используют, например, для понижения температуры воды или влажных поверхностей.

Адиабатическим дросселированием называют процесс необратимого перехода газа (жидкости) с высокого давления на низкое (расширение) при прохождении через сужение поперечного сечения (перегородка с отверстием, пористая перегородка и т.д.) без совершения внешней работы и отдачи или получения теплоты.

Процесс протекает быстро, вследствие чего теплообмен с окружающей средой практически не происходит и энтальпия (теплосодержание) вещества не изменяется. Полезная работа не совершается, так как работа проталкивания переходит в теплоту трения. Энтальпия — это функция состояния, равная сумме внутренней и потенциальной энергии давления (PV), где Р — давление; V— объем.

При адиабатическом дросселировании реального вещества в отличие от идеального вследствие изменения внутренней энергии производится работа против сил взаимодействия молекул. Это приводит к изменению температуры вещества. Изменение температуры реального вещества при дросселировании называется эффектом Джоуля —Томсона.

В зависимости от начального состояния реального вещества перед дросселем температура его при дросселировании может уменьшаться, увеличиваться и оставаться без изменения.

Точка, соответствующая начальному состоянию вещества, в которой его температура при адиабатическом дросселировании не изменяется и, следовательно, изменяется знак температурного эффекта, называется точкой инверсии, а температура, соответствующая этой точке, — температурой инверсии. Точку инверсии можно определить, построив в координатах TV (температура — объем вещества) изобару и проведя к ней касательную из начала координат. При начальных температурах газа ниже температуры инверсии он при дросселировании будет охлаждаться, выше — нагреваться.

Большинство газов, за исключением водорода и гелия, имеют довольно высокую температуру инверсии (600°С и выше), поэтому практически для всех газообразных веществ в области, близкой к критической, адиабатическое дросселирование приводит к понижению температуры.

При адиабатическом расширении газа с отдачей полезной внешней работы получение низких температур возможно при любом его состоянии, так как температура изменяется в сторону понижения. В отличие от адиабатического дросселирования в этом случае эффект возможен и для идеального газа, при этом понижение температуры в процессе адиабатического расширения при прочих равных условиях бывает более значительным, чем при дросселировании.

Адиабатическое расширение газа в детандере (расширителе) используют для получения криогенных температур.

Вихревой эффект достигается в вихревых трубах при подаче в них по тангенциальному вводу сжатого воздуха, имеющего температуру окружающей среды. Скорость вращения воздуха в трубе обратно пропорциональна ее радиусу. Центральная часть вращающегося потока имеет большую скорость, чем периферийная, вследствие чего температура воздуха у стенок трубы выше, а в центре ниже, чем температура подаваемого в трубу воздуха. Можно получить потоки воздуха с низкой и высокой температурами, если разделить центральную и периферийную части потока. Это явление называется эффектом Ранка.

Таким образом, через определенный физический процесс можно получить источник требуемой низкой температуры, необходимый для охлаждения тела.

Низкие температуры (от температур окружающей среды до близких к абсолютному нулю) условно подразделяют на область умеренного холода (до -103 °С, или 170 К), глубокого охлаждения (от -103 до -203 0С, или от 170 до 70 К), криогенные (от -203 до -272,7 °С, или от 70 до 0,3 К) и сверхнизкие (от -272,7 до -272,9992 °С, или от 0,3 до 8 · 10-4 К).

1.2. Способы охлаждения

Для получения холода используются безмашинные и машинные способы охлаждения. Безмашинные способы охлаждения основываются на плавлении, испарении, сублимации.

В безмашинных способах охлаждения используются готовые хладоносители (водный, эвтектический и сухой лед, сжиженные газы, воздух). Установки, работающие на готовых хладоносителях, просты по устройству и, следовательно, наиболее доступны, но они имеют существенные недостатки: полную зависимость от возможности и условий получения хладоносителей; большой объем грузовых работ, связанных с зарядкой хладоносителями и поддержанием гигиены в охлаждаемых помещениях.

Недостатки, свойственные безмашинным способам охлаждения, отсутствуют у машинных способов, когда энергия (механическая, тепловая, электрическая) поступает извне.

По виду затрачиваемой энергии холодильные машины подразделяются на компрессионные, теплоиспользующие и термоэлектрические. Компрессионные машины используют механическую энергию; теплоиспользующие — тепловую от источников теплоты, температура которых выше окружающей среды; термоэлектрические — электрическую.

При охлаждении в компрессионных и теплоиспользующих машинах теплота переносится в результате совершаемого рабочим телом — холодильным агентом (хладагентом) обратного кругового процесса, а в термоэлектрических — при воздействии потока электронов на атомы вещества.

Охлаждение в термоэлектрических машинах основано на термоэлектрическом эффекте, известном как эффект Пельтье, заключающемся в том, что при пропускании постоянного электрического тока по замкнутой цепи, состоящей из двух разнородных проводников или полупроводников, один из спаев нагревается (горячий спай), а другой охлаждается (холодный спай). Для того чтобы холодный спай термоэлемента имел постоянную низкую температуру и был источником холода, горячий спай нужно охлаждать. В этом случае система представляет собой холодильный агрегат, в котором электрический ток переносит энергию от холодного спая термоэлемента к горячему. Количество перенесенной энергии пропорционально силе тока в цепи термоэлемента. Изменение полярности электрического тока приводит к перемене мест холодного и горячего спаев. Основной показатель качества термоэлемента — коэффициент добротности (эффективности вещества), определяющий максимальную разность температур горячего и холодного спаев. К достоинствам такого рода устройств можно отнести непосредственное использование электрической энергии для переноса теплоты без промежуточных веществ и механизмов; бесшумность и автономность работы; компактность и простоту автоматизации и обслуживания. Однако они значительно дороже других холодильных машин.

В зависимости от вида рабочего тела (холодильного агента) холодильные машины, в основе принципа действия которых лежит обратный цикл Карно (см. подраздел 2.1), подразделяют на паровые и газовые.

В испарителе паровой холодильной машины происходит испарение рабочего тела при переходе к нему теплоты от охлаждаемого объекта, а в конденсаторе — его конденсация при переходе теплоты от рабочего тела в окружающую среду (в воздух или воду).

В качестве рабочего тела в паровых холодильных машинах используют аммиак и хладоны — фтористые и хлористые производные предельных углеводородов, в газовых — воздух.

В зависимости от способа подачи рабочего тела в конденсатор холодильные машины подразделяют на компрессионные, абсорбционные, сорбционные и пароэжекторные. В компрессионных холодильных машинах рабочий цикл совершается за счет механической работы компрессора, в абсорбционных, сорбционных и пароэжекторных — за счет затрат теплоты.

Для получения требуемых температур кипения и конденсации рабочего тела используют одноступенчатые, многоступенчатые и каскадные паровые компрессионные машины. Соответственно в одноступенчатых используют один, в многоступенчатых и каскадных — два компрессора и более, которые обеспечивают осуществление холодильного цикла в каждой ступени машины. Для холодильной обработки и хранения пищевых продуктов в охлаждаемых камерах используют преимущественно паровые компрессионные одно- и двухступенчатые холодильные машины.

ГЛАВА 2

ТЕРМОДИНАМИЧЕСКИЕ ОСНОВЫ

ХОЛОДИЛЬНЫХ МАШИН

2.1. Термодинамический цикл холодильных машин

Для непрерывного охлаждения машинными способами помимо охлаждаемого тела и приемника теплоты требуется третье тело, переносящее теплоту от первого ко второму. Это третье тело называется рабочим телом или холодильным агентом. 

Холодильный агент, претерпевая ряд изменений, должен возвращаться в первоначальное состояние, непрерывно участвуя в круговом процессе, или цикле. Подобный цикл называется термодинамическим.

В отличие от прямого цикла (цикл тепловой машины), когда работа производится при переходе теплоты от более нагретого тела к менее нагретому, круговой процесс, в котором для передачи теплоты от менее нагретого тела к более нагретому необходимо подводить энергию (или теплоту), называется обратным циклом. Различают три вида обратного цикла (рис. 2):

холодильный 1—2—3—4, в котором теплота переносится от охлаждаемого тела с температурой Тн к окружающей среде с температурой Тос;

теплового насоса 5— 6— 7— 8, в котором теплота переносится от окружающей среды к телу с более высокой температурой Тв;

комбинированный 9— 10— 11— 12, состоящий из двух первых.

Если при осуществлении процессов, образующих обратный цикл, у взаимодействующих тел не наблюдаются остаточные изменения, т.е. эти процессы обратимы, то и обратный цикл обратим. На осуществление обратимого цикла требуется минимум работы или теплоты, поэтому он является эталоном. Обратимый холодильный цикл 1—2—3—4, приведенный на рис. 2, показан на S— Т – диаграмме, где S — энтропия; Т — абсолютная температура.

Энтропия Sэто отношение ничтожно малого количества теплоты Δq, сообщенной телу (или отнятой у него) в процессе изменения его агрегатного состояния, к абсолютной температуре Т, при которой происходит это приращение теплоты, т.е. S = Δq / Т (Дж/К). Энтропию в тепловых процессах можно рассматривать как термический заряд, который не меняется в идеализированных обратимых циклах.

                                           

Рис. 2. Обратные циклы Карно

Как видно из рис. 2, цикл должен состоять из двух изотермических и двух адиабатических процессов. Такой цикл называется циклом Карно. При этом холодильный агент должен получать теплоту от охлаждаемого тела и передавать ее окружающей среде при постоянных температурах. Температуры холодильного агента и окружающей среды должны отличаться друг от друга на бесконечно малую величину, так как разность температур необходима для осуществления теплообмена.

Точно так же обмен работой между холодильным агентом и окружающей средой должен происходить при бесконечно малой разности давлений.

2.2. Расчет цикла холодильных машин

В изотермическом процессе 4— 1 (см. рис. 2) каждый килограмм циркулирующего холодильного агента получает от охлаждаемого тела теплоту д0, которая называется удельной массовой холодопроизводительностью холодильного агента, выражается площадью а4—1 — b и равенством

                                                         q0 = TH (SbSa).                                                        (1)

В адиабатическом процессе 1—2 при затрате работы /к холодильный агент сжимается и его температура повышается от Тн до Тос. В изотермическом процессе 2— 3 каждый килограмм циркулирующего холодильного агента отдает окружающей среде теплоту q, измеряемую площадью а — 3 2—b:

                                                          q = To.c (Sb - Sa).                                                        (2)

В заключительном адиабатическом процессе 3— 4 холодильный агент расширяется с получением lK, в результате температура его понижается с Тос до Тн.

Работа l превращается в теплоту, подводимую к холодильному агенту, и определяется как разность работ: работы lк, затраченной на сжатие холодильного агента, и работы lр, полученной при его расширении:

                                                               l = lklp.                                                              (3)

В соответствии с первым началом термодинамики сумма энергии, подведенной к холодильному агенту, должна быть равна сумме энергии, отведенной от него:

                                                              q =  q0 + l.                                                            (4)

Отсюда

                                                               l = qq0.                                                             (5)

В ST - диаграмме работа цикла выражается площадью 1—2— 3--4.

Отношение теплоты, полученной холодильным агентом от охлаждаемого тела q0, к работе цикла l называется холодильным коэффициентом, который характеризует эффективность осуществления холодильного цикла:

                                                               ε = q0 / l.                                                              (6)

 

С учетом равенств (1) и (2) холодильный коэффициент можно выразить через температуры:

                                                          ε = TH / (TocTH).                                                    (7)

Из этого следует, что при температуре окружающей среды Тос затраты работы на единицу отведенной теплоты будут тем больше, чем ниже температура Тн. Совокупность технических устройств, обеспечивающих осуществление холодильного цикла, называется холодильной машиной.

Обратимый цикл теплового насоса также может быть представлен циклом Карно 5— 6— 7— 8 (см. рис. 2).

В этом случае теплота q0, полученная 1 кг холодильного агента от окружающей среды, соответствует площади с— 8— 5— d, а теплота qb, отданная телу с высокой температурой Тв, выражается площадью с— 7—6d.

Работа цикла l = qbq0  соответствует площади 5— 6— 7— 8.

Эффективность цикла теплового насоса определяется отношением полученной теплоты к затраченной работе:

 

μ = qb / l

или через температуру:

                                                          μ = ТB / (ТВ – Тo.c).                                                   (8)

Это отношение называется коэффициентом преобразования теплоты μ.

Как следует из этого выражения, величина μ всегда больше единицы. Это свидетельствует о том, что с энергетической точки зрения для отопления целесообразно применять цикл теплового насоса, а не электрический нагреватель. Но при этом надо учитывать, что стоимость холодильного оборудования выше, чем теплового.

Работа комбинированного обратного цикла соответствует площади 9— 10— 11— 12, а отведенная от охлаждаемого тела теплота — площади е—12— 9—f. По такому циклу могут работать машины, одновременно охлаждающие (например, пищевые продукты) и нагревающие (воду или воздух) для технологических либо бытовых целей.

В случаях, когда температура охлаждаемого тела переменна, а окружающей среды постоянна, надо иметь в виду, что холодильный коэффициент цикла Карно будет меньше, чем холодильный коэффициент соответствующего обратного цикла при неизменной температуре охлаждаемого тела.

Реальные циклы необратимы вследствие необратимости действительных процессов, происходящих при их осуществлении: теплообмена при конечной разности температур, расширения и сжатия при наличии трения, дросселирования.

Термодинамическое совершенствование цикла определяется сопоставлением его с обратимым циклом, имеющим ту же величину удельной массовой холодопроизводительности, и оценивается коэффициентом обратимости η, равным отношению их холодильных коэффициентов:

                                                        η = ε / εобр = lобр / l,                                                     (9)

где ε, εобр — холодильный коэффициент соответственно реального и обратимого циклов; lобр , l — работа соответственно реального и обратимого циклов. 

Холодильный коэффициент обратимого цикла Карно εобр больше холодильного коэффициента любого из циклов, осуществляемых в тех же температурных пределах, поэтому ε < εобр и  η < 1. Чем больше необратимость (приращение энтропии) цикла, тем большую работу надо затратить для получения одного и того же полезного эффекта.

2.3. Принцип действия паровых компрессионных

холодильных машин

Одноступенчатые холодильные машины. При работе паровых компрессионных холодильных машин цикл совершается в области влажного пара холодильного агента, где изобары совпадают с изотермами, что позволяет теоретически рассмотреть цикл Карно.

Функциональная схема паровой одноступенчатой холодильной машины и обратимый цикл Карно, совершаемый ею, приведены на рис. 3.

              

Рис. 3. Функциональная схема паровой одноступенчатой холодильной

машины с детандером и дросселем и циклы ее работы:

а — схема машины; б — диаграмма работы машины

Жидкий холодильный агент кипит в испарителе И при постоянной температуре ТK (процесс 4—1), в результате чего от охлаждаемого тела, например воздуха, отводится теплота. При кипении холодильного агента происходит поглощение значительного количества теплоты.

Образовавшийся пар вместе с небольшим количеством неиспарившегося холодильного агента адиабатически сжимается в компрессоре КM до давления РK (процесс 12) и поступает в конденсатор Кн, конденсируясь при постоянной температуре Тк (процесс 2— 3) и отдавая поглощенную в испарителе теплоту окружающей среде — воздуху или воде. Жидкий холодильный агент адиабатически расширяется в детандере Д до давления Ро (процесс 3—4), совершая при этом полезную работу.

Количество отведенной 1 кг холодильного агента теплоты q0 в испарителе определяется на ST-диаграмме площадью а—4—1—b и может быть представлено как разность энтальпий i1i4. Количество теплоты qобр, отданное 1 кг холодильного агента в конденсаторе, определяется площадью a — 3—2—b или разностью энтальпий  i2 - i3.

Работа цикла lобр может быть определена разностью работ компрессора и детандера:

                                                                  lобр = lKlp.                                                   (10)

Работа компрессора и детандера может быть записана

                                                          lk = i2 i1  и  lр = i3i4.                                          (11)

Холодильный коэффициент цикла εобр0 может быть выражен как

                                        εобр0  =  qобр0 /lобр = (i1i4) / [(i2i1) – (i3i4)].                    (12)

Рассмотренный цикл Карно является обратимым. Однако осуществить его практически трудно, так как работа, полученная в детандере, значительно меньше работы, затраченной в компрессоре, ибо жидкость практически несжимаема, а удельные объемы жидкости и пара различаются в сотни раз.

Следует иметь в виду и то, что часть работы детандера тратится на преодоление сил трения, поэтому вместо детандера в паровой холодильной машине используется дроссельный (регулирующий) вентиль ДВ, изображенный на рис. 3 штрихами. Дроссельный вентиль прост в устройстве и надежен в эксплуатации.

Вследствие замены детандера дроссельным вентилем в цикле появляется необратимый процесс дросселирования 3—4, проходящий без производства работы и теплообмена с окружающей средой, т.е. при постоянной энтальпии, поэтому i = i4.

При адиабатическом дросселировании работа расширения переходит в теплоту трения, поэтому часть циркулирующего жидкого холодильного агента, пропорциональная выделенной теплоте, превращается в пар. В испаритель холодильный агент поступает в виде парожидкостной смеси. Поэтому только часть циркулирующего холодильного агента кипит в испарителе, воспринимая теплоту от охлаждаемого тела, вследствие чего удельная массовая холодопроизводительность холодильного агента уменьшается на величину, соответствующую площади а—4—4'—с:

                                                             Δq0 = i4’i4.                                                        (13)

Удельная массовая холодопроизводительность холодильного агента в этом случае:

                                   q0 = qобр0 - Δq0 =  (i1 – i4) – (i4’ – i4) = i1 – i4’.                             (14)

Работа цикла будет больше, чем обратимого:

                                                       l = lкlобр + lp = i2i1.                                             (15)

Холодильный коэффициент цикла

                                                    ε = q0 / l = (i1i4’) / (i2i1).                                        (16)

Как видно, замена детандера дроссельным вентилем приводит к уменьшению удельной массовой холодопроизводительности холодильного агента, холодильного коэффициента и увеличению работы цикла.

В циклах 1—2—3—4 и 1—2—3—4’ влажный пар выходит из испарителя и поступает в компрессор. Это уменьшает производительность компрессора вследствие повышения удельного объема всасываемого пара и падения давления, возникает опасность аварии компрессора в результате гидравлического удара. Чтобы избежать этого, холодильные машины должны работать так, чтобы из испарителя выходил сухой насыщенный или перегретый пар, а в компрессор поступал перегретый пар холодильного агента. Это можно осуществить в цикле 1’— 2’— 3— 4’ со всасыванием в компрессор сухого насыщенного пара.

Для сжатия пара обратимым путем необходимо провести два процесса сжатия: адиабатическое 1’ — 2" и изотермическое 2” — 2, для чего требуется два компрессора. Хотя необратимые потери в цикле 1’—2’—3—4’ больше, чем в цикле 1’—2’’—3—4’, так как холодильный агент передает теплоту окружающей среде в процессе 2’— 2 при конечной разности температур, на практике реализуют цикл 1’2’—3—4’, так как для него достаточно одного компрессора.

Удельная массовая холодопроизводительность холодильного агента в обоих циклах одинакова:

                                                                q0 = i1’i4’.                                                      (17)

 

Но количество теплоты, отданной 1 кг холодильного агента в конденсаторе окружающей среде, и работа цикла 1’ —2’— 3—4’ будут больше, чем в цикле 1’—2’’—3--4’, на величину площади 22’—2’’. Холодильный коэффициент цикла 1’—2’—3—4’ определяется как

                                                    ε = (i1’i4’) / (i2’i1’).                                                  (18)

и будет меньше, чем коэффициент цикла 1’— 2’’ --3—4’.

При всасывании в компрессор перегретого пара (цикл 1а — 2а 3—4’) удельная массовая холодопроизводительность холодильного агента увеличивается, но в большей степени возрастает работа цикла, поэтому необратимые потери увеличиваются. Их можно сократить. Так, необратимые потери, связанные с дросселированием хладагента, могут быть уменьшены его охлаждением перед дросселированием (процесс 3—3') до температуры ниже температуры окружающей среды. Это можно осуществить, например, артезианской водой, температура которой ниже температуры окружающей среды. В таком случае удельная массовая холодо-производительность холодильного агента возрастет на величину i4i4’’, а величина работы цикла не изменится.

Жидкий холодильный агент перед дросселированием можно охладить также паром, выходящим из испарителя в регенеративном теплообменнике, осуществив цикл, называемый регенеративным. Однако при этом температура всасываемого в компрессор (точка вместо 1’) и нагнетаемого в конденсатор (точка вместо 2') пара повышается, что увеличивает необратимые потери так называемого перегрева.

Теоретически выгоднее влажный ход компрессора, так как при этом цикл ближе к идеальному циклу Карно. Однако практически производительность компрессора при влажном ходе всегда и для всех холодильных агентов значительно ниже, чем при сухом ходе, т.е. при всасывании сухих насыщенных паров или несколько перегретых при том же давлении кипения Ро. Отсюда получаем теоретический цикл современной паровой компрессионной машины на ST-диаграмме в виде 1а — 2а—3’— 4". Сейчас почти во всех холодильных машинах компрессоры работают при сухом ходе.

В машинах, работающих на аммиаке, этот режим работы компрессора достигается при помощи специального аппарата — отделителя жидкости либо путем регулирования подачи холодильного агента в испаритель. Отделитель жидкости включается во всасывающую линию холодильной установки между испарителем и компрессором.

В хладоновых установках сухой ход компрессора достигается при помощи специальных теплообменников или путем регулирования подачи холодильного агента в испаритель.

Эффективность работы машины оценивается ее холодильным коэффициентом и холодопроизводительностью, которые зависят от типа и конструкции установки, вида и свойств холодильного агента, конструкции компрессора, а также условий работы. Под условиями работы холодильной машины подразумевают температуру кипения холодильного агента в испарителе t0, температуру конденсации сжатых паров агента в конденсаторе tK, температуру переохлаждения жидкого холодильного агента, поступающего в регулирующий вентиль tп.

Чем выше температура кипения t0, чем ниже температура конденсации паров tK и температура переохлаждения tп, тем больше холодопроизводительность установки. Однако все эти изменения надо проводить в разумных пределах. Так, например, понижение температуры кипения холодильного агента t0 в хладоновой компрессионной машине с -15 до -30 °С не повысит, а понизит ее холодопроизводительность в 2 раза. Это объясняется тем, что с понижением t0 уменьшаются давление кипения Ро и удельный вес паров, поступающих в компрессор. В результате снижается производительность компрессора.

Следовательно, без необходимости не нужно переводить холодильную машину на работу с более низкой температурой кипения.

Многоступенчатые холодильные машины. Одноступенчатые компрессорные машины применяют при Рк09, что соответствует температуре кипения -20 °С и конденсации 30 0С. При больших значениях отношения давлений холодопроизводительность значительно снижается, поэтому вместо одноступенчатых применяют двух-, трехступенчатые и каскадные холодильные машины. Кроме того, при больших значениях отношения Рк0 температура пара в конце сжатия в одноступенчатой машине чрезмерно высока, что приводит к потере маслом смазочных свойств, его самовозгоранию, повышению износа деталей компрессора.

Переход к многоступенчатому сжатию обусловлен и необходимостью соблюдения условий прочности, так как по расчетам разность давлений Рк - Ро компрессоров не должна превышать 1,7 МПа. В многоступенчатых машинах температура паров холодильного агента в конце сжатия первой ступени компрессора обычно выше температуры окружающей среды, поэтому приходится охлаждать перегретый пар прямоточно в водяном межступенчатом холодильнике. Кроме водяного применяют промежуточное охлаждение холодильным агентом, что увеличивает холодильный коэффициент. Многократное дросселирование холодильного агента с промежуточным отбором пара снижает энергетические потери.

Холодильный агент сжимается до давления конденсации последовательно в две или более ступеней с промежуточным охлаждением частично сжатых паров. На каждой ступени отношение давления нагнетания к давлению всасывания меньше, чем Рк0 для полного цикла данной машины.

В схемах с многократным дросселированием промежуточное охлаждение между ступенями сжатия может быть полным и неполным (рис. 4).

        

Рис. 4. Принципиальные схемы многоступенчатых парокомпрессионных машин:

а — с неполным промежуточным охлаждением;

6 — с полным промежуточным охлаждением

Неполное промежуточное охлаждение осуществляется водой. В этом случае (см. рис. 4, а) температура сжатого пара после цилиндра низкого давления (ЦНД) — процесс 1— 2 -  снижается в водяном межступенчатом холодильнике I до состояния 3' сухого перегретого пара, а затем пар поступает в цилиндр высокого давления (ЦВД). Состояние 4' на ST-диаграмме (рис. 5) соответствует состоянию пара после сжатия в ЦВД в двухступенчатой холодильной машине без промежуточного отбора пара.

Промежуточный отбор пара осуществляется из промежуточного сосуда II, в который поступает парожидкостная смесь после первого дросселирования в РВ1. Жидкость на РВ1 подается из конденсатора III  при давлении конденсации Рк, соответствующем давлению пара в ЦВД, и снижается после дросселирования до промежуточного давления Р'o (см. рис. 5) и соответствующей температуры T0'.

Сухой насыщенный пар из промежуточного сосуда (состояние 3) поступает в ЦВД. В результате смешивания сухого насыщенного и перегретого паров после холодильника всасываемый в ЦВД пар переходит в состояние 3", а после сжатия — в 4" (процесс 3"—4", см. рис. 5).

Рис. 5. Цикл многоступенчатой парокомпрессионной машины

Жидкость из промежуточного сосуда используется для кипения в испарителе V (рис. 4) при более низкой температуре То и давлении P"0 после вторичного дросселирования в РВ2, но может использоваться и для кипения в испарителе IV при более высокой температуре кипения Т"о и давлении P'0 в цикле после первого дросселирования в РВ1. Из испарителя IV сухой насыщенный пар (точка 3) выходит в том же состоянии, что и из промежуточного сосуда.

При полном промежуточном охлаждении состояние рабочего тела перед всасыванием в компрессор более высокой ступени соответствует состоянию сухого насыщенного пара.

Сжатый в ЦНД пар после межступенчатого водяного холодильника (точка 3', рис. 4, б) поступает на доохлаждение в промежуточный сосуд II, где приходит в состояние насыщенного пара (точка 3, рис. 5). Из промежуточного сосуда сухой насыщенный пар отсасывается в ЦВД. При наличии испарителя IV из него в ЦВД также поступает сухой насыщенный пар. Процесс сжатия пара в ЦВД характеризуется линией 3—4 (см. рис. 5), температура конца сжатия в этом случае более низкая, чем при других двухступенчатых схемах.

Через разные элементы многоступенчатых схем с промежуточным отбором пара циркулирует неодинаковое количество вещества. Следовательно, изображение процессов в многоступенчатых холодильных установках на термодинамических диаграммах носит условный характер, так как каждый процесс в них относится к изменению состояния 1 кг вещества. Поэтому массовые потоки в элементах многоступенчатых машин при их расчете относят к 1 кг рабочего тела, проходящего через низкотемпературный испаритель.

Для получения очень низких температур применения одного рабочего тела недостаточно из-за давлений кипения рабочего тела, близких к глубокому вакууму, затвердевания его при низкой температуре кипения в испарителе и по другим причинам. В этих случаях приходится использовать каскадные холодильные машины, в каждой ступени которых применяют свое рабочее тело. При этом испаритель каждой следующей ступени является конденсатором предыдущей. Холодильный коэффициент цикла холодильной машины, приведенный выше, который называют теоретическим, составляет примерно 80 % холодильного коэффициента идеального цикла Карно при тех же значениях Тк и То. Холодильный коэффициент реального цикла холодильной машины, в свою очередь, еще меньше из-за объемных и энергетических потерь.

Рассмотрим работу поршневого компрессора двойного действия (рис. 6).

При движении поршня П в цилиндре слева направо давление пара над поршнем становится несколько ниже, чем давление в сборнике пара низкого давления Г, вследствие чего открывается самодействующий всасывающий клапан Е1 и пар заполняет полость цилиндра А. Пар рабочего вещества заполняет весь цилиндр, когда поршень достигает крайнего правого положения (нижняя мертвая точка — н.м.т.). Далее поршень сжимает пар, перемещаясь справа налево (к верхней мертвой точке — в.м.т.). Давление пара повышается, вследствие чего всасывающий клапан Е1 закрывается. Поскольку рассматривается схема компрессора двойного действия, аналогичные процессы, смещенные по фазе, происходят в цилиндре и под поршнем (полость Б). При дальнейшем движении поршня к в.м.т. давление в цилиндре возрастает, и пар, сжимаясь, совершает соответствующий условиям термодинамический процесс (изотермический, адиабатический или политропический) до величины давления, несколько превышающего давление в сборнике Д. Тогда открывается нагнетательный клапан Ж1, и сжатый пар по мере движения поршня к в.м.т. поступает в сборник Д. По достижении поршнем в.м.т. пар полностью вытесняется из полости А цилиндра, а в полости Б в этот момент завершился процесс всасывания, и в компрессоре повторяются все описанные выше процессы.

                          

Рис. 6. Схема поршневого компрессора двойного действия

Рис. 7. Теоретическая индикаторная диаграмма поршневого компрессора

Происходящие в рабочей полости цилиндра компрессора процессы анализируют с помощью индикаторной диаграммы, построенной в координатах давление пара Р — объем цилиндра V (рис. 7).

При этом принимают, что объем, описанный поршнем, в точности равен объему цилиндра, давление всасывания и давление нагнетания в цилиндре равны соответственно давлению в испарителе Ро и давлению в конденсаторе Рк, параметры состояния пара в процессах всасывания и нагнетания не изменяются, процесс сжатия происходит по адиабатическому закону.

При движении поршня из крайнего левого положения вправо открывается всасывающий клапан и пары холодильного агента заполняют рабочую полость цилиндра. Всасывание происходит при постоянном давлении, равном давлению кипения Ро в испарителе (линия 4— 1), и заканчивается в крайнем правом положении поршня (н.м.т.). Всасывающий клапан в этот момент закрывается.

При обратном движении поршня происходит адиабатическое сжатие паров холодильного агента (линия 1—2) до давления, равного давлению конденсации Рк в конденсаторе. При достижении давления Рк внутри цилиндра открывается нагнетательный клапан, через который сжатые пары вытесняются поршнем из цилиндра при Рк = const (линия 2—3).

При рассмотрении теоретического процесса принимают также, что между поршнем, достигшим крайнего левого положения (в.м.т.), и крышкой компрессора не осталось пространства, следовательно, весь холодильный агент выталкивается из цилиндра, т.е. не остается вредного (мертвого) пространства.

Теоретическую холодопроизводительность компрессора можно определить по формуле

                                                           QT=Vc qv;                                                               (19)

                                              Vc= Vh n Z = 0,25 π D2 s n Z,                                             (20)

где Vc — объем, описываемый поршнями компрессора; qv — удельная объемная холодопроизводительность холодильного агента; Vhобъем цилиндра без мертвого пространства; п — частота вращения коленчатого вала; Zчисло цилиндров компрессора; Dдиаметр цилиндров; s — ход поршня.

Однако действительные процессы, протекающие в компрессоре, сопровождаются рядом потерь, вызываемых гидравлическим сопротивлением в клапанах и трубопроводах, теплообменом между парами холодильного агента и внутренними стенками цилиндров, наличием вредного пространства в цилиндрах, трением, проникновением паров холодильного агента через неплотности и другими причинами.

Индикаторная диаграмма действительного рабочего процесса значительно отличается от теоретической (рис. 8).

Рис. 8. Индикаторная диаграмма действительного рабочего

процесса в цилиндре компрессора

Из диаграммы видно, что между крышкой компрессора и поршнем, находящимся в в.м.т., имеется мертвый объем V0, который уменьшает объем всасываемого пара. Процесс расширения сжатых паров холодильного агента из мертвого пространства изображен кривой 3—4, представляющей собой политропу.

Точка 4 на диаграмме соответствует моменту открытия всасывающего клапана компрессора и началу процесса всасывания. Процесс всасывания отображает линия 4—1, расположенная ниже уровня Ро на величину ΔР0 из-за сопротивлений во всасывающих трубопроводах, клапанах и каналах.

Точка 1 характеризует конец процесса всасывания, закрытие всасывающего клапана и начало процесса сжатия. Сжимаются пары холодильного агента по политропе 12 до давления, превышающего давление конденсации Рк на величину ΔРК, равную гидравлическому сопротивлению в каналах, клапанах и трубопроводах нагнетательной стороны компрессора. Точка 2 соответствует моменту открытия нагнетательного клапана, а линия 2 — 3 отображает процесс нагнетания.

Точка 3 показывает момент окончания процесса нагнетания, закрытие нагнетательного клапана и начало процесса расширения паров холодильного агента, оставшихся в мертвом пространстве, т.е. момент, когда поршень занимает в.м.т.

Отрезок Vh пропорционален рабочему объему цилиндра, а отрезок Vo — объему мертвой зоны. Величина Vcl пропорциональна той части рабочего объема цилиндра, которая теряется из-за наличия мертвого пространства, а величина Vc2 = Vh - (V1 + Vc1) - части рабочего объема цилиндра, которая теряется из-за гидравлического сопротивления на стороне всасывания.

Объемные потери, обусловленные наличием мертвого пространства, зависят от его объема и отношения давлений Рк0 и оцениваются объемным коэффициентом

                                                          λc=1 – Vc1 / Vh.                                                        (21)

Для всасывания пара в цилиндр давление в нем должно быть меньше, чем в испарителе, а при выталкивании выше, чем в конденсаторе (см. рис. 8). Объемные потери вследствие дросселирования учитываются соответствующим коэффициентом

                                                λдр= 1 - [(1 + Vc /Vh) Δp0 / λc);                                          (22)

                                                          Δp0 = о - Рвс)/Р0,                                                  (23)

где Δр0 — относительная величина потери давления всасывания в каналах (Δр0 = 0,02 — 0,05).

В действительном процессе стенки цилиндров компрессора нагреты, пары во время всасывания подогреваются и их удельный объем увеличивается, масса уменьшается, что учитывается коэффициентом подогрева

                                                                  λП0 К,                                                        (24)

где Tо и Тксоответственно температуры кипения и конденсации холодильного агента.

Интенсивность теплообмена больше при всасывании в цилиндры компрессора влажного пара, чем сухого. Кроме того, она зависит от отношения давлений Р0 к и частоты вращения коленчатого вала компрессора. Чем меньше это отношение и быстроходнее агрегат, тем меньше теплообмен в его цилиндрах.

Действительный объем паров холодильного агента, проходящих через цилиндр компрессора, определяют по формуле

                                                 Vd = Vh λ = Vh λc λдр λп λпл;                                              (25)

λ = f (PK / P0),

где  λкоэффициент подачи; λплкоэффициент плотности, учитывающий потери объема всасываемого холодильного агента от неплотностей в поршневых кольцах и клапанах (λпл = 0,96 — 0,98).

Производительность компрессора холодильной машины должна обеспечивать отсасывание пара из испарителя с той же интенсивностью, с которой он образуется в результате кипения жидкого холодильного агента. Если холодильный агент кипит быстрее, чем компрессор может отводить пар, то избыточное количество пара накапливается в испарителе, давление увеличивается, в результате повышается температура кипения.

Температура кипения холодильного агента в испарителе — главный фактор, влияющий на производительность компрессора. Если она повышается при постоянной температуре конденсации, то степень сжатия Рк0 уменьшается, коэффициент подачи компрессора возрастает и его производительность увеличивается.

Если производительность компрессора такова, что пар отводится из испарителя слишком быстро, то давление в испарителе уменьшается, температура кипения снижается и увеличивается удельный объем холодильного агента. Все это приводит к уменьшению холодопроизводительности компрессора. При повышении температуры конденсации при постоянной температуре кипения степень сжатия Рк0 увеличивается, коэффициент подачи компрессора снижается. В результате действительный объем перемещаемого компрессором пара в единицу времени уменьшается, холодопроизводительность компрессора снижается.

Паровые компрессионные холодильные машины входят в состав холодильных установок. Схемы холодильных установок помимо холодильных машин включают системы охлаждения объекта, например холодильника, рефрижераторного поезда и т.д.

2.4. Система охлаждения холодильной установки

Системой охлаждения называют ту часть холодильной установки, которая располагается между регулирующим вентилем и всасывающим патрубком компрессора. Назначение этой системы — поддержание заданного температурно-влажностного режима охлаждаемого объекта.

По способу подачи рабочего тела к потребителям холода, а также способу отвода от них теплоты различают системы непосредственного охлаждения (безнасосные и насосные) и с промежуточным хладоносителем.

В безнасосной системе непосредственного охлаждения рабочее тело (холодильный агент) поступает в охлаждающие приборы от регулирующего вентиля с отбором паров из них компрессором. Жидкий холодильный агент циркулирует за счет разности давлений конденсации и испарения.

В насосной системе циркуляция жидкого холодильного агента в низкотемпературном контуре осуществляется с помощью насоса. В этом случае в схему вводится емкость (ресивер), в которой находится определенный объем холодильного агента. Такая система называется насосно-циркуляционной.

В системах с промежуточным хладоносителем в охлаждающих приборах циркулирует жидкий хладоноситель, который охлаждается холодильным агентом в испарителе холодильной машины.

В зависимости от способа отвода теплоты от потребителя холода и конструкции охлаждающих приборов различают системы батарейного (панельного), воздушного, смешанного и контактного охлаждения.

В батареях (панелях) теплообмен происходит при переходе теплоты при естественной конвекции от охлаждаемого тела в воздух, а затем из воздуха через тонкие стенки охлаждающих приборов к холодильному агенту или хладоносителю.

В воздушных системах охлаждения движение воздуха осуществляется принудительно, благодаря чему скорость перемещения его по сравнению со скоростью при естественной конвекции возрастает в 10 — 20 раз.

В смешанных системах сочетаются батарейное и воздушное охлаждение.

При контактном охлаждении отвод теплоты от потребителя холода осуществляется при непосредственном контакте с ним охлаждающего прибора.

2.5. Холодильные агенты и хладоносители

Холодильные агенты. Как уже было сказано, какой-либо термодинамический процесс или цикл совершается с помощью холодильного агента (рабочего тела).

При нормативном атмосферном давлении 0,1 МПа холодильный агент должен иметь достаточно низкую температуру кипения, чтобы при работе холодильной машины не было разрежения в испарителе. Например, для аммиака NH3 температура кипения при давлении 0,1 МПа составляет 33,4°С.

Основными холодильными агентами являются вода, аммиак, хладоны и воздух.

Воду применяют главным образом в установках кондиционирования воздуха, где обычно температура теплоносителя tH > 0 0С. В качестве холодильного агента воду используют в установках абсорбционного и эжекторного типов.

Аммиак имеет малый удельный объем при температуре кипения -70 °С, большую теплоту парообразования, слабую растворимость в масле и другие преимущества. Его применяют в поршневых компрессионных и абсорбционных установках. К недостаткам аммиака следует отнести ядовитость, горючесть, взрывоопасность при концентрациях в воздухе 16 — 26,8 %.

Хладоны (фреоны) химически инертны, мало- или невзрывоопасны. Хладоны — галоидопроизводные предельных углеводородов, получаемые путем замены атомов водорода в насыщенном углеводороде СnН2n + 2 атомами фтора, хлора, брома (СnНx, Fy, С1z, Вгu). Число молекул отдельных составляющих, входящих в химические соединения хладонов, связаны зависимостью х + у + z+ u = = 2n + 2. Любой холодильный агент обозначается символами RN, где R — символ, указывающий на вид холодильного агента, N — номер хладона или присвоенный номер для других холодильных агентов.

Для хладонов номер расшифровывается следующим образом. Первая цифра в двузначном номере или первые две цифры в трехзначном обозначают насыщенный углеводород СnН2n + 2, на базе которого получен хладон: 1 — СН4 (метан); 11 — С2Н6 (этан); 21 — С3Н8 (пропан); 31 — С4Н10 (бутан). Справа указывают число атомов фтора в хладоне: CFC13R11, CF2C12R12, C3F4C14R214, СС14R10. При наличии в хладоне незамещенных атомов водорода их число добавляют к числу десятков номера: CHFC12R21, CHF2C1 — R22. Если в состав хладона входят атомы брома, после основного номера пишут букву В, а за ней число атомов брома: CF2Br2R12B2.

В качестве рабочих тел могут использоваться азеотропные смеси, составляемые из двух холодильных агентов. Например, азеотропную смесь, состоящую из 48,8 % R22 по массе и 51,2 % R115 (C2F5Cl), называют хладоном R502, его температура кипения при давлении 0,1 МПа -45,6 0С.

В обозначениях смесей холодильных агентов указывают названия составляющих и их массовые доли. Хладон R502 можно обозначить R22/R115 (48,8/51,2). Цифрами, начиная с 500, условно обозначают азеотропные смеси, процентный состав которых в процессе кипения и конденсации практически не изменяется.

Холодильным агентам неорганического происхождения (аммиак, вода) присваивают номера, равные их молекулярной массе, увеличенной на 700. Так, аммиак и воду обозначают соответственно R717 и R718.

Холодильный агент должен обладать определенными теплофизическими и физикохимическими свойствами, от которых зависят конструкция холодильной машины и расход энергии.

К теплофизическим свойствам относятся вязкость μ, теплопроводность λ, плотность ρ и др. Они, как и теплота парообразования r, оказывают влияние на коэффициент теплоотдачи при кипении и конденсации. Большим значениям λ, ρ, r и малой вязкости  соответствуют большие значения коэффициентов теплоотдачи.

На гидравлическое сопротивление при циркуляции холодильного агента в системе влияют μ и ρ: чем они больше, тем больше сопротивление. Количество циркулирующего в системе холодильного агента уменьшается с ростом теплоты парообразования.

К физико-химическим свойствам относятся растворимость холодильных агентов в смазочных маслах и воде, инертность к металлам, взрывоопасность и воспламеняемость.

При ограниченной растворимости холодильных агентов в масле в жидкой фазе смеси наблюдаются два слоя, из которых в одном преобладает масло, в другом — холодильный агент. К холодильным агентам с ограниченной растворимостью относятся аммиак R717, диоксид углерода R44 и ограниченно растворимые хладоны R13, R14, R115.

К холодильным агентам с неограниченной растворимостью относятся R11, R12, R21, R40. В этом случае для смеси хладона и масла требуется поддержание более низкого давления кипения, поэтому на сжатие пара затрачивается излишняя работа.

Хладоны R22 и R114 составляют промежуточную группу.

Аммиак неограниченно растворяет воду. При небольшом количестве воды работа холодильной машины заметно не нарушается. Хладоны почти не растворяют воду.

Избыточная влага в хладоне при прохождении через дроссель превращается в лед (если t0 < 0°С) и «запаивает» дроссельное отверстие. По этой причине холодильные машины имеют специальные осушительные устройства.

Хладоны при отсутствии влаги в области применяемых в холодильной технике температур на металлы не действуют.

Аммиак не оказывает коррозирующего действия на сталь. В присутствии воды он разъедает медь, цинк, бронзу и другие медные сплавы, за исключением фосфористой бронзы. Хладоны R11, R12, R13, R22 невзрывоопасны.

Хладоны с большим содержанием атомов фтора или полностью фторированные (R13, R113) практически безвредны для человека. Хладон R12 на открытом пламени разлагается, и в продуктах его разложения содержатся ядовитый фосген и вредные для человека фтористый и хлористый водород.

Рассмотрим область применения холодильных агентов. Аммиак (R717), хладоны R12 и R22 используют в компрессионных холодильных машинах для получения температур кипения от -30 до -40 °С без вакуума в системе охлаждения. Хладон R12 применяют в одноступенчатых холодильных машинах с температурой конденсации не более 75 °С и температурой кипения не ниже -30 0С, в бытовых холодильниках, кондиционерах, водоохлаждающих холодильных машинах. Хладон R22 используют в машинах с поршневыми и винтовыми компрессорами одно- и двухступенчатого сжатия, а также в бытовых холодильных машинах. Диапазон температур кипения от +10 до -70 °С при температуре конденсации не выше 50 0С. Одноступенчатое сжатие рекомендуется применять до температур кипения не ниже -35 °С.

Холодильный агент R502 применяют в низкотемпературных одноступенчатых холодильных машинах при температуре конденсации до 50 °С, кипения до -45 °С.

Широкое распространение получили появившиеся в 1930-е годы галогенизированные хладагенты R12, R22 и др. Только в России в начале 1990-х годов работало более 50 млн бытовых холодильников и сотни тысяч единиц промышленного, торгового и других видов холодильного оборудования, в которых использовались эти хладоны. Однако в ходе исследований «озоновых дыр» (значительного уменьшения содержания озона на высоте 20 — 25 км в земной атмосфере) было установлено, что промышленные и бытовые отходы, содержащие атомы хлора, в том числе хладоны, достигая атмосферы, высвобождают хлор, который участвует в разрушении озонового слоя. Известно, что озоновый экран (среднее содержание озона в атмосфере 0,001%) защищает поверхность Земли от избыточных ультрафиолетовых лучей, большая доза которых способна уничтожить все живое. Поэтому Международной конвенцией в Вене в 1985 г., Протоколом в Монреале в 1987 г. и последующими протоколами с участием представителей крупнейших стран мира были приняты решения о прекращении к 2000 г. производства и использования озоноопасных хладонов, в первую очередь R11, R12, R113, R114, R115. Хладагенты R22, R123, R124, R141 и R142 разрешены в качестве переходных для замены запрещаемых. Но и они должны быть исключены из использования к I 2040 г., а по возможности и раньше (к 2020 г.)

Взамен вышеперечисленных хладонов предлагаются гидрофторуглеводороды (ГФУ) и гидрохлорфторуглеводороды (ГХФУ), которые благодаря содержанию водорода разлагаются гораздо быстрее, чем хлорфторуглеводороды, в нижних слоях атмосферы, не достигая озонового слоя. На мировом рынке такие озонобезопасные хладоны предлагает, например, фирма «Дюпон» (США) под торговой маркой «СУВА». «Дюпон» поставляет на рынок хладагент НР62 (R404a), имеющий при давлении 0,1 МПа температуру кипения порядка -46 °С, гидрофторуглеводород R134a (CH2FCF3) и др. В России также освоен выпуск R134a. Он может полностью заменить R12, хотя при его использовании несколько снижаются удельная холодопроизводительность установки (92 % от удельной холодопроизводительности R12), холодильный коэффициент (98 % по сравнению с R12), увеличивается соотношение давлений конденсации и кипения (123%, если принять это соотношение для R12 равным 100 %). Для R134a подобраны и синтетические масла (ХС-22, ХФС-134). Температура кипения R134a при давлении 0,1 МПа составляет -26,5 °С. В выпускаемых в России холодильниках и морозильниках «Стинол» (г. Липецк) используется преимущественно R134a.

Разработаны заменители и для других хладонов. Так, альтернативным для R22 может быть R407C или R290. Холодильный агент R407C представляет собой смесь R32/125/134a в соотношениях 23/25/52%. Хладон R502 может быть заменен на R125 (CHF2CF3), имеющий температуру кипения -48,5 °С. Для низкотемпературных машин (каскадных) может быть рекомендован озонобезопасный R23.

Расширяется использование аммиака, не влияющего на окружающую среду. Аммиак в два раза легче воздуха и при утечке быстро поднимается в атмосферу, где разлагается в течение нескольких дней. При выбросе жидкий аммиак немедленно испаряется. Но следует иметь в виду, что он ядовит, горюч и взрывоопасен. Если ранее аммиак использовали преимущественно в крупных по холодопроизводительности холодильных машинах, то теперь промышленность осваивает конструкции средних и малых аммиачных компрессоров и холодильного оборудования на их основе.

Хладоносители. Хладоносители являются промежуточным веществом между источником холода и объектом охлаждения. Они подразделяются на жидкие и твердые.

К жидким хладоносителям относятся водные растворы солей — рассолы и однокомпонентные вещества, замерзающие при низких температурах (этиленгликоль, кремнийорганическая жидкость). Применяют водные растворы солей NaCl, MgCl2, СаС12, температура замерзания которых до известного предела (состояния криогидратной точки) зависит от концентрации рассола. Для раствора NaCl криогидратная точка -21,2°С, для MgCl2 -33,6°С, для СаС12 -55°С. Для уменьшения коррозирующего действия рассолов на металлические части оборудования в них добавляют пассиваторы: силикат натрия, хромовую соль, фосфорные кислоты.

Этиленгликоль в зависимости от концентрации в воде может иметь температуру замерзания от 0°С (вода) до -67,2 °С при концентрации 70 % по объему.

Твердые хладоносители — это эвтектический лед, образующийся при криогидратной температуре, представляющий собой смесь льда и соли и имеющий постоянную температуру плавления.

ГЛАВА 3

ТИПЫ ХОЛОДИЛЬНЫХ МАШИН

3.1. Газовые и вихревые холодильные машины

Холодильной машиной называют комплект оборудования, необходимый для осуществления холодильного цикла.

В зависимости от вида физического процесса, в результате которого получают холод, холодильные машины подразделяют на следующие типы: использующие процесс расширения воздуха (газовые, вихревые); использующие фазовый переход рабочего тела из жидкого в газообразное состояние (компрессионные паровые, абсорбционные, сорбционные, пароэжекторные).

В зависимости от вида потребляемой энергии различают холодильные машины на механической энергии (компрессионные паровые, газовые), теплоиспользующие (пароэжекторные, абсорбционные и сорбционные).

К холодильным машинам можно также отнести воздушные детандерные, использующие процесс расширения воздуха с производством внешней работы, и безмашинные термоэлектрические, потребляющие непосредственно электроэнергию на основе эффекта Пельтье. Холодильные машины подразделяют и по другим типам.

В газовых холодильных машинах холодильными агентами являются газообразные вещества, агрегатное состояние которых не изменяется при совершении цикла, в основном воздух; поэтому их называют воздушными холодильными машинами.

Первые воздушные холодильные машины появились 100 лет назад. Однако тогда они не получили широкого распространения и были вытеснены с рынка парокомпрессионными, так как удельная массовая холодопроизводительность воздуха значительно меньше, чем кипящего холодильного агента в цикле паровой холодильной машины. При использовании воздушных холодильных машин требуется большая массовая подача холодильного агента, поэтому только по мере развития газотурбинной и особенно турбореактивной техники удалось создать воздушные турбохолодильные машины, близкие по экономичности в области относительно низких температур (от -80 до -120°С) к парокомпрессионным. Функциональная схема и идеальный цикл воздушной холодильной машины в ST-диаграмме изображены на рис. 9.

Воздух в компрессоре адиабатически сжимается от давления Р1 до Р2 (процесс 1—2), нагреваясь при этом от температуры T1 равной температуре охлаждаемого тела То, до Т2. Далее воздух охлаждается в теплообменнике ТО от температуры Т2 до Т3 (процесс 2—3),

Рис. 9. Функциональная схема воздушной холодильной машины и цикл

ее работы: а — схема машины; б — диаграмма работы машины

равной температуре охлаждающей среды Тос, отдавая поглощенную теплоту внешней среде, например воде. После этого воздух адиабатически расширяется в детандере Д от давления Р2 до Р1 (процесс 3—4), совершая полезную работу, и поступает в охлаждаемый объект Об, где нагревается от температуры Т4 до T1 (процесс 4—1), отводя теплоту от охлаждаемого тела, например воздуха. Из охлаждаемого объекта воздух поступает в компрессор, и цикл повторяется.

Если допустить, что воздух является идеальным газом, т.е. Ср = const, и представить для адиабатических процессов сжатия и расширения воздуха отношение температур в виде

                                                  T2 / T1 = Т34 = (Р21)(n – 1) / n,                                      (26)

где п — показатель адиабаты, холодильный коэффициент цикла:

                                                                    ε1 / (Т2 - Т1) = Т4 / (Т34).                                      (27)

Коэффициент обратимости цикла

                                                                    h = ε / ε обр,                                                   (28)

где ε обр — холодильный коэффициент обратимого цикла Карно.

Цикл воздушной холодильной машины имеет большие необратимые потери, поэтому термодинамически он целесообразен, если машина осуществляет комбинированный цикл, охлаждая и нагревая одновременно.

В воздушных холодильных машинах типа ТХМ, разработанных в нашей стране, охлаждение происходит благодаря расширению воздуха в расширительной машине — детандере с производством внешней полезной работы. Такие машины имеют холодопроизводительность 30 — 60 кВт и более и используются для быстрого замораживания эндокринного сырья (желез внутренней секреции, направляемых на медицинские цели), некоторых видов продуктов растительного происхождения (плодов, овощей, ягод), кулинарных изделий.

Машины вихревого типа представляют собой цилиндрическую трубу, разделенную диафрагмой на холодную и горячую части.

С термодинамической точки зрения процессы, протекающие в вихревой трубе, сводятся к тому, что слои воздуха, вращающиеся вблизи оси, отдают кинетическую энергию остальной (периферийной) массе воздуха и при этом охлаждаются. Другая же часть воздуха воспринимает эту энергию и нагревается в результате трения, на преодоление которого затрачивается значительная часть кинетической энергии.

Термодинамическое совершенство воздушных холодильных машин вихревого типа не превышает нескольких процентов и зависит от использования теплоты потока воздуха, выходящего из горячей части вихревой трубы. Если эта теплота утилизируется, то общая эффективность повышается. Вихревые трубы просты в изготовлении и эксплуатации, компактны и высоконадежны. Однако область их использования ограничена вследствие низкой экономичности термодинамических процессов.

3.2. Компрессионные паровые холодильные машины

Подавляющее большинство действующих холодильных машин — парокомпрессионные, которые в зависимости от типа используемого компрессора подразделяют на поршневые, центробежные, винтовые и ротационные. Для обеспечения требуемых температур кипения и конденсации рабочего тела используют одноступенчатые, многоступенчатые и каскадные компрессионные паровые холодильные машины.

Функциональные схемы паровой одноступенчатой холодильной машины с детандером и дросселем и их циклы, а также принципиальная схема многоступенчатых парокомпрессионных машин и их цикл были рассмотрены выше. Также было дано описание Циклов в парокомпрессионных холодильных машинах.

Для реализации цикла в комплект компрессионной паровой холодильной машины входят компрессор, конденсатор, испаритель, теплообменник, приборы автоматики, пускозащитная электроаппаратура, монтажные трубопроводы и другие элементы.

Наиболее широко распространены компрессионные паровые холодильные машины с поршневыми компрессорами, обладающие наиболее высокими по сравнению с машинами других типов энергетическими коэффициентами, способностью работать при более высоком отношении давлений конденсации и кипения. Однако они менее надежны, чем машины с центробежными и винтовыми компрессорами. Это машины средней холодопроизводительности. Их используют в рассольных системах охлаждения, но можно применять и в системе непосредственного охлаждения, как и машины малой холодопроизводительности.

Холодильные машины с центробежными компрессорами имеют низкую энергетическую эффективность при небольшой холодопроизводительности (менее 700 кВт), поэтому используются при повышенной холодопроизводительности.

Холодильные машины с винтовыми маслозаполненными компрессорами высоконадежны, имеют удовлетворительные энергетические показатели при производительности, превосходящей верхний предел эффективности холодильных машин с поршневыми компрессорами. Несмотря на основной недостаток — наличие металлоемкой масляной системы, холодильные машины с винтовыми компрессорами получили большое распространение.

Холодильные машины с ротационными пластинчатыми компрессорами отличаются простотой устройства, изготовления и эксплуатации, большей уравновешенностью, чем поршневые, так как в них нет деталей, совершающих возвратно-поступательное движение, нечувствительностью компрессора к гидравлическим ударам. Однако они имеют недостатки: значительные потери на трение, повышенный шум. При холодопроизводительности от нескольких сот ватт до нескольких киловатт сравнимы с показателями холодильных машин с поршневыми компрессорами.

3.3. Абсорбционные и сорбционные холодильные машины

Абсорбционные и сорбционные холодильные машины отличаются от компрессионных тем, что в них отвод теплоты от охлаждаемого объекта к окружающей среде осуществляется путем затраты внешней энергии в виде теплоты, а не работы.

В абсорбционных холодильных машинах циркулирует рабочее тело, представляющее собой бинарный раствор веществ, имеющих различные нормальные температуры кипения. Низкокипящее вещество выполняет роль холодильного агента, а высококипящее — абсорбента (поглотителя).

Бинарные растворы, используемые наиболее широко, — это аммиак — вода и вода — бромид лития. Причем аммиак в первом растворе и вода во втором являются холодильными агентами. Водоаммиачные машины используют для получения относительно низких температур (до -70°С), а бромистолитиевые — для более высоких. Теплоиспользующие абсорбционные холодильные машины перспективны с точки зрения экономии топливно-энергетических ресурсов, поскольку позволяют использовать вторичные ресурсы (отходящие газы, отработанный пар, горячую воду), теплоту ТЭЦ в неотопительный период. С точки зрения экологии также есть положительные моменты: эти машины позволяют избежать применения в качестве хладагентов хлорфторуглеводородов, отрицательно воздействующих на озоновый слой атмосферы, а также выбросов машинного масла в окружающую среду.

Однако абсорбционные холодильные машины работают при температуре греющего источника 70 — 180 °С (чаще 155 — 180 °С), поэтому диапазон температур до 70 °С не реализуется и соответственно теплота часто просто сбрасывается в атмосферу. В этом диапазоне могут работать сорбционные холодильные машины, к которым подводится теплота низкого уровня температур, а запасы тепловой энергии в указанном температурном диапазоне огромны.

В сорбционных холодильных машинах используют рабочие смеси, обладающие эффектом не только сорбции, но и полной взаимной растворимости компонентов. Сорбционные холодильные машины (СХМ) не имеют конкурентов в выработке холода от теплоты низкого потенциала, начиная с температуры, превышающей всего на 10 — 15 °С температуру среды, охлаждающей конденсатор. Рабочими веществами таких машин могут быть ацетон (50 %) и пропанбутановая смесь техническая зимняя (50 %), а также водные растворы роданида аммония и др. С помощью СХМ возможно получение холода на уровне   -30 °С при тепловом коэффициенте от 5 до 10 % и выше.

Область применения СХМ — бытовые холодильники и кондиционеры, автомобильный транспорт, выбрасывающий в окружающую среду большое количество теплоты на уровне температур выше 70 °С.

В бытовых холодильниках и кондиционерах может быть использована энергия солнечного излучения, полученная с помощью солнечных коллекторов. СХМ, установленные на холодильниках агропромышленного комплекса и торговли, позволяют дополнительно вырабатывать холод за счет использования теплоты перегрева паров хладагента и теплоты охлаждающего масла винтовых компрессоров. Холодопроизводительность СХМ составляет порядка 1 кВт.

3.4. Пароэжекторные холодильные машины

Пароэжекторные холодильные машины относятся к группе теплоиспользующих. В них осуществляются одновременно два цикла: прямой (силовой), в котором теплота превращается в механическую работу, и обратный (холодильный), в котором эта механическая работа используется для получения холода. В качестве рабочих тел в пароэжекторных холодильных машинах могут быть использованы вода, аммиак и хладоны. Однако практически применяют чаще всего пароводяные эжекторные холодильные машины, в которых рабочим телом и одновременно хладоносителем служит вода.

Пароводяные эжекторные холодильные машины работают при температуре кипения выше 0°С. В них охлаждают воду для установок кондиционирования воздуха и производственно-технологических нужд. Холодильный цикл протекает при давлении ниже атмосферного, температура кипения рабочей воды обычно 2 — 15 °С, что соответствует остаточному давлению в испарителе 700 — 1700 Па. Показатель μ современных пароэжекторных холодильных машин в зависимости от условий работы и конструкции составляет 0,14 — 0,18.

Машины обычно выполняют в виде агрегатов, включающих теплообменные аппараты, эжекторы и внутримашинный трубопровод с запорной, регулирующей и защитной арматурами. Агрегатированные пароэжекторные холодильные машины имеют холодопроизводительность от 200 до 2000 кВт.

ГЛАВА 4

КОМПРЕССОРЫ ХОЛОДИЛЬНЫХ МАШИН

4.1. Поршневые компрессоры

Виды поршневых компрессоров. Поршневые компрессоры подразделяют по холодопроизводительности, виду холодильного агента, области применения, устройству кривошипно-шатунного механизма, конструкции корпуса, расположению цилиндров, направлению движения пара в последних, числу степеней сжатия, степени герметичности и некоторым другим признакам.

По холодопроизводительности поршневые компрессоры подразделяют на малые (Q0 до 12 кВт), средние (Q0 12—120 кВт) и крупные (Q0 более 120 кВт).

По виду холодильного агента различают аммиачные, хладоновые (фреоновые) и универсальные компрессоры.

В зависимости от области применения компрессоры подразделяют на стационарные, транспортные и др.

По устройству кривошипно-шатунного механизма различают компрессоры крейцкопфные, или ползунковые (двойного действия), и бескрейцкопфные (простого действия).

Крейцкопфные компрессоры бывают в основном одноцилиндровые, горизонтальные, сальниковые, непрямоточные (см. рис. 6).

Наиболее распространены бескрейцкопфные открытые компрессоры вертикальные и V-образные, прямоточные и непрямоточные (рис. 10).

Число цилиндров у бескрейцкопфных компрессоров колеблется от 2 до 16. Двухцилиндровые компрессоры, как правило, вертикальные. Если цилиндров больше, применяют различные пространственные схемы их расположения.

Бескрейцкопфные компрессоры разнообразны по конструктивному исполнению.

По конструкции корпуса компрессоры подразделяют на блок-картерные (общая отливка блока с картером) и разъемные (блок цилиндров и картер представляют собой отдельные детали).

Большое распространение получили блок-картерные компрессоры. В цилиндровую часть блок-картера вставляют сменные цилиндровые гильзы. Блок-картерные компрессоры по сравнению с разъемными отличаются большей жесткостью и прочностью при меньшей толщине стенок цилиндров; их изготовление и ремонт проще.

В зависимости от кинематической схемы и расположения оси цилиндров компрессоры делят на прямоточные и непрямоточные; горизонтальные и вертикальные; с угловым расположением цилиндров — V-, W-образные или веерные, крестообразные, звездообразные.

В прямоточном компрессоре всасывающие клапаны располагаются на днище поршня, а нагнетательные — в верхней части цилиндра, в ложной крышке.

В непрямоточных компрессорах клапаны всасывающие и нагнетательные размещаются в верхней части цилиндра — на клапанной доске. При движении поршня вниз давление в цилиндре компрессора становится ниже, чем во всасывающей полости, и пар проходит через вентиль во всасывающую полость, а затем через всасывающий клапан в полость цилиндра. При движении поршня вверх пар сжимается до давления конденсации и через нагнетательный клапан попадает в нагнетательную полость.

По числу степеней сжатия компрессоры бывают одно- и многоступенчатые.

По степени герметичности и числу разъемов компрессоры подразделяют:

  на герметичные — со встроенным электродвигателем в запаянном кожухе без разъемов;

  бессальниковые — со встроенным электродвигателем, с разъемами и съемными крышками;

  открытые, или сальниковые, в которых ведущий вал уплотняется при помощи сальника;

  простого действия, в которых сжатие пара осуществляется одной стороной поршня, и двойного действия, в которых обе стороны поршня рабочие.

Герметичные компрессоры — компрессор и электродвигатель заключены в общий герметически закрытый сварной стальной кожух. Электродвигатели устанавливают однофазные и трехфазные асинхронные. Ротор электродвигателя насаживается непосредственно на вал компрессора. Частота вращения вала может быть близка к 50 с-1, что позволяет уменьшить геометрические размеры, габариты и массу компрессора при той же холодопроизводительности. Обмотка электродвигателя охлаждается потоком всасываемого пара холодильного агента, благодаря чему возможно повышение на него нагрузки. Герметичные машины почти бесшумны. Их холодопроизводительность находится в пределах от нескольких сотен ватт до 10 кВт. Герметичные компрессоры изготавливают для трех различных диапазонов температур кипения холодильного агента: С — среднетемпературного от-25 до +10 оС; Н - низкотемпературного от -40 до -25 °С и В — высокотемпературного от -10 до +10 °С.

Компрессоры С используют в торговом холодильном оборудовании и бытовых холодильниках. В бытовых холодильниках применяют в основном одноцилиндровые поршневые непрямоточные герметичные компрессоры с вертикальным цилиндром и горизонтальным валом. Электродвигатели в последнее время используют однофазные асинхронные с пусковой обмоткой и короткозамкнутым ротором, скорость вращения которого, а следовательно, и вала компрессора 50 с-1.

Компрессоры Н применяют в низкотемпературном холодильном оборудовании и небольших морозильных устройствах.

Компрессоры В используют для кондиционеров, охладителей напитков, соков, молока и других устройств.

Бессальниковые компрессоры непрямоточные. Разъемное соединение и съемные крышки обеспечивают доступ к их внутренним частям. Обмотки электродвигателей, как и герметичных компрессоров, охлаждаются всасываемым паром холодильного агента.

Отличительная особенность бессальниковых компрессоров – отсутствие сальников, так как электродвигатель находится на одном валу с компрессором и располагается в его картере. Такая конструкция позволяет уменьшить габариты и практически полностью исключить утечку рабочего тела.

Холодопроизводительность таких компрессоров находится в пределах от нескольких до нескольких десятков киловатт (средние по величине холодопроизводительности компрессоры).

Рис. 10. Бескрейцкопфный непрямоточный VV-образный

одноступенчатый компрессор П220:

а - продольный разрез; б — поперечный разрез; 1 — блок-картер; 2 — гильза Цилиндра; 3— поршень с кольцами; 4— шатун; 5— заборный масляный фильтр; 6 - шестеренчатый затопленный насос; 7— шестерни привода масляного насоса; 8 - коленчатый вал с противовесами; 9 — ложная крышка; 10 — всасывающий клапан; 11 — нагнетательный клапан; 12— сальник уплотнения вала

 

В сальниковых компрессорах самым уязвимым конструктивным узлом является уплотнение коленчатого вала, через которое наиболее вероятна утечка холодильного агента. Особенно велика опасность утечки в малых хладоновых компрессорах.

По характеру охлаждения блока цилиндров бывают компрессоры с воздушным и водяным охлаждением. Воздушное охлаждение используется в малых холодильных компрессорах, во всех остальных применяют водяное принудительное охлаждение.

Для смазки трущихся деталей используются принудительная, непринудительная или комбинированная системы смазки.

По типу привода различают компрессоры с ременной передачей; непосредственно соединенные с электродвигателем муфтой; с электродвигателем, ротор которого насажен на вал компрессора.

По частоте вращения коленчатого вала компрессоры разделяют на тихоходные — до 500 об/мин и быстроходные — свыше 500 об/мин.

Унифицированные поршневые компрессоры выпускают для хладонов I и II баз, для аммиака и хладонов — III и IV баз, для аммиака — V базы.

Герметичные компрессоры I базы имеют горизонтальное и вертикальное расположения двух или четырех цилиндров.

Компрессоры герметичные и бессальниковые предназначены для хладонов, сальниковые — для аммиака и хладонов. Хладоновые компрессоры I, II и III баз — непрямоточные, IV — прямоточные; аммиачные III и IV баз — прямоточные; аммиачные компрессоры V базы — крейцкопфные непрямоточные с опозитным расположением двух или четырех цилиндров.

Для смазки цилиндров и механизма движения в аммиачных компрессорах используют масла ХА, ХА-30, ХС-40, а в хладоновых - ХФ-12-16, ХФ-22-24, ХФ-22с.

При маркировке унифицированных поршневых компрессоров применяют следующие обозначения: П — поршневой, Ф — хладоновый (фреоновый), А — аммиачный, В — вертикальный, VV-образный, W — веерообразный, Б — бессальниковый, Г — герметичный, О — опозитный. Цифры после букв означают холодопроизводительность (кВт).

В сальниковых компрессорах марок П14, П20, П28 и др. расположение цилиндров V-, W-, VV-образное.

В бессальниковых компрессорах марок ПБ5, ПБ7 — ПБ220 расположение цилиндров также V-, W-, VV-образное.

Основные конструктивные узлы и детали поршневых компрессоров — рама, картер, блок-картер, цилиндры, коленчатые валы, шатуны, поршни, поршневые кольца, клапаны, сальники.

Картер представляет собой конструктивную основу машины. Картер вертикальных и V-образных компрессоров имеет вид коробки с боковыми окнами, которые закрываются съемными крышками. Крышку со стороны маховика, через которую проходит коленчатый вал компрессора, называют задней, а противоположную ей — передней. Сверху картера крепится блок цилиндров. Многие конструкции вертикальных компрессоров выполняются блок-картерными. В этом случае цилиндры и картеры отливаются в виде единой детали. Блок-картерные компрессоры компактнее, имеют меньше фланцевых соединений, проще и дешевле в производстве.

В каждый цилиндр запрессовывают сменные гильзы, которые в случае износа могут быть заменены новыми. Сменные гильзы уплотняют по верхнему и нижнему поясам резиновыми кольцами. Для охлаждения цилиндров верхнюю часть их боковой поверхности отливают с ребрами (при охлаждении воздухом) или со специальной полостью (при охлаждении водой — водяной рубашкой).

Коленчатые валы по конструкции могут быть кривошипными и эксцентриковыми. Их выполняют штампованными, литыми или цельноковаными из высококачественной углеродистой или легированной стали. Опорой коленчатого вала служат подшипники, расположенные в крышках картера или корпусе.

Чтобы движение поршня было равномерным, на конец коленчатого вала, выступающий из картера, насаживается маховик — шкив большего диаметра с тяжелым ободом. При непосредственном соединении компрессора с электродвигателем надобность в маховике отпадает, его роль выполняет ротор двигателя.

Шатуны передают движение от коленчатого вала к поршням. Они — штампованные стальные двутаврового сечения с разъемной нижней головкой, с вкладышем, залитым баббитом, и неразъемной верхней головкой с бронзовой втулкой.

Нижние головки шатунов, которые охватывают шейки коленчатого вала, стягиваются стальными болтами с зашплинтованными корончатыми гайками. Верхние головки пальцами поршня закрепляются в поршне.

Поршни по конструкции делят на дисковые и тронковые. Дисковые используют в крупных крейцкопфных компрессорах двойного Действия, когда по обе стороны поршня расположены рабочие объемы цилиндра. Тронковые поршни могут быть двух типов: проходные для прямоточных машин, непроходные для непрямоточных.

Конструкция проходных поршней позволяет увеличить проходные сечения всасывающего и нагнетательного клапанов.

Непроходные поршни отличаются простотой конструкции и небольшой массой. Их используют в малых и средних непрямоточных компрессорах. Поршни для герметичных компрессоров делают без поршневых колец. Вместо них на боковой поверхности протачивают неглубокие канавки для сбора и равномерного распределения масла по зеркалу цилиндра.

Всасывающие и нагнетательные клапаны выполняют в компрессоре распределительную функцию. Через всасывающие клапаны происходит засасывание паров холодильного агента из всасывающего трубопровода в цилиндр компрессора, а через нагнетательные — выталкивание сжатых паров в нагнетательный трубопровод. В поршневых холодильных компрессорах клапаны самодействующие, т.е. они открываются и закрываются под действием разности давлений по обе их стороны.

На всасывающие клапаны прямоточных компрессоров, расположенные в днище поршня, помимо давления газа действуют силы инерции. В вертикальном прямоточном компрессоре при движении поршня вверх и достижении им верхней мертвой точки клапанная пластина по инерции стремится продолжить движение вверх, и клапан открывается, в то время как поршень после остановки начинает двигаться вниз. Когда же поршень останавливается в нижней мертвой точке, клапанная пластина по инерции стремится продолжить движение вниз, прижимается к седлу клапана, и он закрывается.

В бескрейцкопфных компрессорах применяют пластинчатые клапаны, получившие свое название потому, что их рабочей запорной деталью служат тонкие (0,8— 1,5 мм) стальные пластины. Пластинчатые клапаны в зависимости от конфигурации и крепления клапанных пластин бывают кольцевыми, полосовыми, язычковыми.

Кольцевые клапаны применяют в средних и крупных компрессорах.

В конструкциях клапанов, закрепленных на поршнях, используют беспружинные кольцевые и полосовые клапаны. Полосовые клапаны называют еще ленточными, поскольку в них отверстия для прохода пара перекрываются упругими пластинами, имеющими форму лент.

Предохранительные клапаны предотвращают аварии при чрезмерном повышении давления нагнетания. При превышении предельной разности давлений нагнетания и всасывания (ΔP = 1,68 МПа) предохранительные клапаны перепускают сжатый пар из полости нагнетания в полость всасывания.

Применяют в основном пружинные самодействующие предохранительные клапаны. Когда разность давлений превышает допустимую, пружина сжимается, клапан открывается и нагнетательная сторона компрессора соединяется с всасывающей.

Сальниками называют специальные устройства для уплотнения подвижных деталей, например валов, штоков, плунжеров, в целях предотвращения утечки жидкостей, пара или газа. Применяют сальники с кольцами трения. Сальники открытых хладоновых компрессоров бывают сильфонного и мембранного типов.

4.2. Ротационные компрессоры

Ротационные компрессоры более уравновешены, чем поршневые, поскольку у них нет кривошипно-шатунного механизма, совершающего возвратно-поступательное движение. Кроме того, они не имеют всасывающих клапанов и могут работать при больших частотах вращения вала. Габариты ротационных компрессоров невелики. Изготавливают их с катящимися, качающимися и вращающимися роторами, последние (пластинчатые компрессоры) — с двумя, четырьмя и более пластинами, с круглым или эллиптическим цилиндром.

Вал ротационных компрессоров расположен эксцентрично по отношению к цилиндру. На вал насажен ротор (поршень) с фрезерованными по всей длине пазами, в которые вставлены асботекстолитовые пластины. При вращении ротора пластины под действием центробежной силы выходят из пазов и прижимаются к поверхности цилиндра, образуя замкнутые полости.

Пар из всасывающего трубопровода захватывается пластинами, отсекается в верхней части цилиндра вращающимся ротором и сжимается. При дальнейшем вращении полость со сжатым паром соединяется с нагнетательным трубопроводом и пар выталкивается.

Ротационные компрессоры используют в основном в установках большой холодопроизводительности в качестве ступеней низкого давления в агрегатах двухступенчатого сжатия. Но выпускают и герметичные компрессоры небольшой холодопроизводительности.

Ротационный герметичный компрессор с катящимся ротором состоит из неподвижного цилиндра и поршня-ротора, вращающегося на эксцентриковой шейке вала. К ротору при помощи пружины прижимается лопасть, разделяющая рабочий объем цилиндра на две части: в одной протекает процесс всасывания, в другой — сжатия и нагнетания.

При работе компрессора пары хладона поступают через всасывающий патрубок в кожух, омывают электродвигатель и охлаждают его, затем через всасывающую трубку всасываются компрессором. Сжатые пары холодильного агента через нагнетательный клапан выталкиваются из цилиндра в глушитель, а из него по трубопроводу подводятся к нагнетательному штуцеру. Холодопроизводительность таких компрессоров от 255 до 640 Вт.

4.3. Винтовые компрессоры

Основу винтовых компрессоров составляют два ротора (оба с зубчато-винтовыми лопастями): ведущий и ведомый, расположенные в корпусе (рис. 11).

Рис. 11. Роторы винтового компрессора:

1 — ведущий ротор с четырьмя зубьями; 2 — ведомый ротор

с шестью впадинами; 3 — синхронизирующие шестерни

Винтовые впадины роторов, проходя мимо всасывающего окна, заполняются газообразным холодильным агентом. При дальнейшем вращении роторов газ сжимается, так как зубья одного ротора входят во впадины другого и при этом уменьшается объем, занимаемый газом. К концу сжатия впадины со сжатым газом объединяются с нагнетательным окном. Винтовое расположение на роторах нескольких впадин обеспечивает непрерывность подачи газа компрессором.

Применяют большей частью маслозаполненные винтовые компрессоры, в рабочее пространство которых подается масло. Это повышает производительность компрессора вследствие уменьшения внутренних перетечек холодильного агента через зазоры между корпусом и роторами и между самими роторами, а также снижения температуры нагнетания холодильного агента.

После прохождения компрессора хладагент направляется в маслоотделитель, в котором отделяется до 95 % масла. Шестеренчатым насосом масло направляется в маслоохладитель, через фильтры снова подается в рабочее пространство компрессора и на смазку подшипников.

Винтовые компрессоры надежны в эксплуатации, их холодопроизводительность можно плавно регулировать с помощью золотникового устройства, изменяющего активную длину винтов, у них отсутствует трение в полости сжатия. Они имеют небольшие габариты и массу по сравнению с поршневыми и даже ротационными компрессорами.

Винтовые компрессоры характеризуются очень низким пределом давления всасывания (5 — 2 кПа), что позволяет широко использовать их в низкотемпературных установках. Частота вращения ведущего ротора у них составляет 50 с-1.

Целесообразно применение аммиачных винтовых компрессоров холодопроизводительно-стью 350—1745 кВт. При более низкой производительности они утрачивают преимущества перед поршневыми по массе и габаритным размерам из-за громоздкости маслосистемы.

4.4. Турбокомпрессоры

Турбокомпрессоры редко используют в пищевой промышленности из-за большой холодопроизводительности и широкого применения аммиака в качестве холодильного агента. По сравнению с поршневыми они обладают рядом преимуществ: отсутствие клапанов, динамическая уравновешенность, высокооборотность и малые габариты. Турбокомпрессоры обычно имеют несколько колес, поэтому являются многоступенчатыми машинами. По принципу работы они подразделяются на осевые и центробежные.

Осевые компрессоры применяют для очень большой холодопроизводительности, центробежные — для холодопроизводительности от 500 до нескольких тысяч киловатт. На валу центробежного компрессора вращаются рабочие колеса с лопатками, передающие кинетическую энергию холодильному агенту, который выбрасывается из колеса в диффузор, где его кинетическая энергия преобразуется в энергию давления. Диффузор выполняется безлопаточным, лопаточным и прямолинейным. Движение пара на рабочем колесе складывается из вращения его вместе с колесом (абсолютное движение) и перемещения вдоль лопаток (относительное движение), что в сумме определяет абсолютную скорость движения пара, а следовательно, его кинетическую энергию. Работа, затрачиваемая на сжатие пара, уменьшается по мере приближения процесса сжатия к изотермическому, поэтому после группы колес применяется промежуточное охлаждение пара в холодильниках.

ГЛАВА 5

ТЕПЛООБМЕННЫЕ АППАРАТЫ ХОЛОДИЛЬНЫХ МАШИН

5.1. Конденсаторы

Различают следующие типы конденсаторов: кожухотрубные горизонтальные, кожухотрубные вертикальные, кожухозмеевиковые, испарительные и воздушные.

Кожухотрубные горизонтальные конденсаторы используют в аммиачных и хладоновых холодильных установках пищевых предприятий. Они имеют цилиндрический стальной кожух, в котором Прямые трубы (стальные или медные) расположены горизонтально, концы их развальцованы в трубных решетках. Охлаждающая вода под напором проходит по этим трубам. На конденсаторе устанавливают предохранительный клапан, указатель уровня холодильного агента, вентиль для выпуска воздуха из межтрубного пространства. Пары хладагента конденсируются в межтрубном пространстве на наружной поверхности труб.

Такие конденсаторы обычно работают в комплекте с водоохлаждающими устройствами.

Кожухотрубные вертикальные конденсаторы используют в крупных аммиачных холодильных установках. Главный их недостаток — сложность равномерного распределения воды по трубам.

Кожухозмеевиковые конденсаторы отличаются от кожухотрубных горизонтальных отсутствием второй трубной решетки, кожух конденсатора выполнен в виде горизонтально расположенного стакана, внутри которого водяные трубки соединены попарно.

Испарительные конденсаторы применяют на пищевых предприятиях. В них теплота от холодильного агента передается через стенку трубы воде, стекающей тонкой пленкой по наружной поверхности труб, и далее воздуху посредством испарения части воды.

Конденсатор представляет собой закрытый корпус. Под конденсатором располагается водяной бак, куда вода сливается самотеком. Из водяного бака циркулирующая вода снова нагнетается насосом в водяной коллектор (оросительную систему). Сверху вентилятором подается поток воздуха, который усиливает испарение воды и служит приемником теплоты водяного пара. Использование этого типа конденсаторов эффективно в районах с сухим и жарким климатом.

Воздушные конденсаторы широко используют в агрегатах, обслуживающих торговое оборудование, бытовых холодильниках, изотермическом транспорте. Применение их позволяет уменьшить расход воды, сократить затраты на сооружение устройств для охлаждения оборотной воды.

Воздушные конденсаторы представляют собой систему трубчатых змеевиков, расположенных в металлическом корпусе. Холодильный агент проходит внутри змеевиков, с наружных оребренных поверхностей которых осуществляется съем теплоты естественной или принудительной конвекцией движения воздуха. Ребра труб змеевиков пластинчатые, но иногда для устранения контактного сопротивления теплопередачи между трубой и ребрами эти конденсаторы изготавливают с литыми ребрами.

5.2. Испарители

Испарители — теплообменные аппараты, предназначенные для охлаждения промежуточного хладоносителя путем теплообмена с кипящим холодильным агентом.

По конструкции кожухотрубный и кожухозмеевиковый испарители подобны горизонтальному кожухотрубному и кожухозмеевиковому конденсаторам. Хладоноситель циркулирует в трубах, а в межтрубном пространстве испарителя кипит холодильный агент.

Испарители изготавливают с закрытой и открытой циркуляцией охлаждаемой жидкости. Испарители с закрытой циркуляцией выполняются кожухотрубными. Охлаждаемая жидкость протекает в них под напором, который создает насос. В испарителях с открытой циркуляцией трубы, по которым протекает кипящий холодильный агент, погружаются в охлаждаемую жидкость, наливаемую в баки.

Испарители с открытой циркуляцией — панельные. В них жидкость перемешивается мешалкой. Панельный испаритель выполнен в виде прямоугольного бака, в который помещаются испарительные секции панельного типа.

Панельные испарители поставляются в комплекте с отделителями жидкости. При применении в качестве хладоносителя ледяной воды панельные испарители можно использовать как испарители-аккумуляторы для сглаживания неравномерности тепловой нагрузки на молочных предприятиях.

5.3. Охлаждающие приборы

Охлаждающие приборы (батареи) подразделяют на приборы непосредственного кипения и с промежуточным хладоносителем (рассольные). Наружная поверхность труб может быть гладкой или оребренной.

Распространены воздухоохладители из оребренных труб или пластин с каналами, внутри которых кипит хладагент или циркулирует хладоноситель. Воздух продувается с помощью вентилятора. Разность температур воздуха и поверхности охлаждения может достигать 12°С.

Воздухоохладители бывают постаментные и подвесные, они компонуются из секций-модулей. Подвесные воздухоохладители обозначаются: ВОП-50, ВОП-75, ВОП-100, ВОП-150, где ВО — воздухоохладитель, П — подвесной, цифры — теплопередающая поверхность (в м2). Производительность ВОП от 5,8 до 17,4 кВт. Для оттаивания инея в них предусмотрены электронагреватели — ТЭНы мощностью от 8,7 до 12 кВт.

Помимо ВОП выпускают воздухоохладители ВОГ-230, в которых воздух перемещается горизонтально осевым вентилятором. Батареи ВОГ-230 выполняют из тех же секций, что и ВОП. Оттаивание происходит с помощью горячих паров аммиака или электронагревателей мощностью 25 кВт.

Подвесные воздухоохладители применяют в холодильных камерах молокозаводов и на мясокомбинатах для охлаждения и замораживания пищевых продуктов.

Для охлаждения камер длительного хранения мороженых грузов используют панельные батареи, представляющие собой стальные листы, к которым приваривают цельнотянутые трубы.

Хладоновые потолочные и пристенные батареи из оребренных красномедных труб применяют в небольших холодильных установках. В бытовых холодильниках, льдогенераторах кубикового льда и некоторых видах торгового холодильного оборудования применяют листотрубные испарители. Их изготавливают электросваркой листов с выштампованными канавками или гидравлической раздачей канавок в плоских сваренных между собой листах.

ГЛАВА 6

ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ ХОЛОДИЛЬНЫХ

МАШИН И УСТАНОВОК

К вспомогательному оборудованию относятся отделители жидкости, маслоотделители, промежуточные сосуды, ресиверы и др. Они обеспечивают стабильность и безопасность работы холодильных установок.

Отделители жидкости предназначены для улавливания капель жидкости, которые содержатся в парожидкостной смеси холодильного агента, поступающего из испарителей. Тем самым они защищают компрессор от опасного режима работы при попадании в цилиндр жидкости вместе с паром холодильного агента, обеспечивают сухой ход компрессора, приближая режим холодильной машины к расчетному. Капли жидкости осаждаются в этих аппаратах вследствие резкого уменьшения скорости и изменения направления движения потока парожидкостной смеси на 90, 180°.

Аммиачные отделители жидкости обозначают 125 Ожг, 150 Ожг, 200 Ожг, 250 Ожм, 300 Ожм (О — отделитель, ж — жидкость, г — условное обозначение, м — с обогревом зоны маслосбора, цифры перед буквами — диаметры входного и выходного паровых патрубков).

Отделители жидкости устанавливают только на панельных испарителях и в некоторых системах охлаждения фруктохранилищ. При использовании охлаждающих систем с принудительной циркуляцией холодильного агента жидкость отделяется в циркуляционном ресивере.

Маслоотделители предназначены для отделения масла, уносимого холодильным агентом из компрессора. Масло увлекается агентом как в виде капель, так и в парообразном состоянии. Уменьшение масляной пленки приводит к повышению эффективности теплообменных аппаратов. Маслоотделители подразделяются на промывные и инерционные.

В промывных маслоотделителях пар проходит через слой жидкого холодильного агента. При этом он охлаждается в результате испарения части жидкости и освобождается от масла на 85 — 90 %.

В инерционных маслоотделителях происходит отделение масляных капель в результате резкого изменения скорости и направления потока, а также действия центробежной силы. Степень отделения масла — до 80 %.

Маслоотделитель представляет собой сварной вертикальный сосуд, заполненный до определенного уровня жидким аммиаком, через который проходят пары аммиака. Очистившись от масла, пары аммиака выводятся из сосуда. Обозначения промывных отделителей: 50 ОММ, 300 ОММ (О — отделитель, М — масло, М — модернизированный, цифры перед буквами означают диаметр условного прохода входного и выходного патрубков).

Промежуточные сосуды используют в аммиачных холодильных установках двухступенчатого сжатия для полного промежуточного охлаждения паров холодильного агента, поступающего из компрессора ступени низкого давления, и для переохлаждения жидкого аммиака в змеевике аппарата перед регулирующим вентилем. Охлаждение паров хладагента осуществляется путем барботирования их через слой жидкого аммиака. Промежуточный сосуд типа ПСз (П — промежуточный, С — сосуд, з — змеевиковый) представляет собой вертикальный сосуд со встроенной теплопередающей поверхностью, выполненной в виде змеевика, который укреплен на днище. Он заполняется жидким аммиаком так, чтобы змеевик был полностью погружен в него. Промежуточный сосуд отделяет также масло после ступени низкого давления. Для периодического слива масла в нем предусмотрен трубопровод с вентилем.

Ресиверы — это герметичные цилиндрические сосуды, служащие емкостью для жидкого холодильного агента. Различают линейные, дренажные, циркуляционные и защитные ресиверы. По конструкции они бывают вертикальные и горизонтальные.

Линейные ресиверы предназначены для компенсации различия в заполнении испарительного оборудования жидкостью при изменении тепловой нагрузки. Они освобождают конденсатор от жидкости и создают равномерный поток жидкого агента к регулирующему вентилю. Их устанавливают между конденсатором и регулирующим вентилем. Постоянно поддерживаемый уровень Жидкого холодильного агента является гидравлическим затвором, который препятствует перетеканию пара высокого давления в испаритель. Линейный ресивер — хороший сборник воздуха и масла.

Дренажные ресиверы служат для слива жидкого холодильного агента из аппаратов и трубопроводов холодильной установки при эксплуатации и ремонте.

Циркуляционные ресиверы используют в насосно-циркуляционных схемах питания испарительных систем жидким холодильным агентом. Они представляют собой резервуар, постоянно содержащий жидкий холодильный агент в количестве, обеспечивающем непрерывную работу циркуляционного насоса, подающего жидкость в испарители. Ресиверы устанавливают на стороне низкого давления ниже отметки, на которой размещается все оборудование испарительной системы. Это обеспечивает свободный слив жидкости из испарителей и отделителей жидкости.

Защитные ресиверы вместе с отделителем жидкости, который устанавливают на всасывающем трубопроводе между испарителями и компрессором, служат для защиты компрессоров от гидравлических ударов. Применяют их в безнасосных системах питания испарителей жидким холодильным агентом.

Горизонтальные ресиверы типа РД (Р — ресивер, Д — дренажный) используют как линейные, дренажные, циркуляционные и защитные; ресиверы РДВ (В — вертикальный) — как циркуляционные и защитные.

Насосы холодильных установок предназначены для циркуляции охлаждающей воды в оборотных системах водоснабжения, промежуточного хладоносителя (рассол или ледяная вода), а также жидкого аммиака в насосно-циркуляционных системах. Для жидкого аммиака применяют специальные аммиачные бессальниковые насосы.

Переохладители в аммиачных машинах необязательны. В виде отдельного аппарата их применяют только на больших холодильных установках, обязательно на тех, которые снабжены оросительными конденсаторами.

Теплообменники для хладоновых машин необходимы не только для переохлаждения жидкого холодильного агента, но и для перегрева парообразного хладона, поступающего из испарителя в компрессор.

Теплообменник представляет собой стальной сварной кожух в виде отрезка трубы с приваренными к ее торцам сферическими донышками. Внутри трубы (кожуха) — змеевик из медной трубки. Концы его выведены из кожуха через отверстия в донышках. Жидкий хладон проходит через теплообменник внутри змеевика, а парообразный — в кожухе, омывая наружную поверхность змеевика. Движение жидкости и пара осуществляется противотоком.

В малых холодильных машинах, применяемых для бытовых холодильников, функцию теплообменника выполняют спаянные между собой на некотором участке трубки: капиллярная, по которой жидкий хладон направляется к испарителю, и отсасывающая, по которой пар холодильного агента проходит в противоположном направлении — от испарителя к компрессору.

ГЛАВА 7

АВТОМАТИЗАЦИЯ, АВТОМАТИЧЕСКОЕ РЕГУЛИРОВАНИЕ И

АГРЕГАТЫ ХОЛОДИЛЬНЫХ МАШИН И УСТАНОВОК

7.1. Автоматизация холодильных установок

Автоматизация холодильных установок предполагает оснащение их автоматическими устройствами (приборами и средствами автоматизации), с помощью которых обеспечиваются безопасная работа и проведение производственного процесса или отдельных операций без непосредственного участия обслуживающего персонала или с частичным его участием.

Объекты автоматизации совместно с автоматическими устройствами образуют системы автоматизации с различными функциями: контроля, сигнализации, защиты, регулирования и управления. Автоматизация повышает экономическую эффективность работы холодильных установок, так как уменьшается численность обслуживающего персонала, снижается расход электроэнергии, воды и других материалов, увеличивается срок службы установок вследствие поддержания автоматическими устройствами оптимального режима их работы. Автоматизация требует капитальных затрат, поэтому проводить ее надо, основываясь на результатах технико-экономического анализа.

Холодильную установку можно автоматизировать частично, полностью или комплексно.

Частичная автоматизация предусматривает обязательную для всех холодильных установок автоматическую защиту, а также контроль, сигнализацию и нередко управление. Обслуживающий персонал регулирует основные параметры (температура и влажность воздуха в камерах, температура кипения и конденсации холодильного агента и т.д.) при отклонении их от заданных значений и нарушении работы оборудования, о чем информируют системы контроля и сигнализации, а некоторые вспомогательные периодические процессы (оттаивание инея с поверхности охлаждающих приборов, удаление масла из системы) выполняются вручную.

Полная автоматизация охватывает все процессы, связанные с поддержанием требуемых параметров в охлаждаемых помещениях и элементах холодильной установки. Обслуживающий персонал может присутствовать лишь периодически. Полностью автоматизируют небольшие по мощности холодильные установки, безотказные и долговечные.

Для крупных промышленных холодильных установок более характерна комплексная автоматизация (автоматические контроль, сигнализация, защита).

Автоматический контроль обеспечивает дистанционное измерение, а иногда и запись параметров, определяющих режим работы оборудования.

Автоматическая сигнализация — извещение с помощью звукового или светового сигнала о достижении заданных величин, тех или иных параметров, включении или выключении элементов, холодильной установки. Автоматическую сигнализацию подразделяют на технологическую, предупредительную и аварийную.

Технологическая сигнализация — световая, информирует о работе компрессоров, насосов, вентиляторов, наличии напряжения в электрических цепях.

Предупредительная сигнализация на защитных, циркуляционных ресиверах сообщает, что величина контролируемого параметра приближается к предельно допустимому значению.

Аварийная сигнализация световым и звуковым сигналами извещает о том, что сработала автоматическая защита.

Автоматическая защита, обеспечивающая безопасность обслуживающего персонала, обязательна для любого производства. Она предотвращает возникновение аварийных ситуаций, выключая отдельные элементы или установку в целом, когда контролируемый параметр достигает предельно допустимого значения.

Надежную защиту в случае возникновения опасной ситуации должна обеспечивать система автоматической защиты (САЗ). В простейшем варианте САЗ состоит из датчика-реле (реле защиты), контролирующего величину параметра и вырабатывающего сигнал при достижении ее предельного значения, и устройства, преобразующего сигнал реле защиты в сигнал остановки, который направляется в систему управления.

На холодильных установках большой мощности САЗ выполняют так, чтобы после срабатывания реле защиты автоматический пуск отказавшего элемента без устранения вызвавшей остановку причины был невозможен. На небольших холодильных установках, например на предприятиях торговли, где авария не может привести к тяжелым последствиям, нет постоянного обслуживания, объект включается автоматически, если величина контролирусмоге параметра возвращается в допустимую область.

Разновидностью защиты можно считать блокировку, когда, например, компрессор может быть включен только если включен хотя бы один водяной насос, подающий воду в конденсатор, и рассольный насос для систем с промежуточным хладоносителем.

Наибольшее число видов защиты имеют компрессоры, поскольку по опыту эксплуатации 75 % всех аварий на холодильных установках происходят именно с ними.

Число параметров, контролируемых САЗ, зависит от типа, мощности компрессора и вида холодильного агента.

Виды защиты компрессоров:

    от недопустимого повышения давления нагнетания — предотвращает нарушение плотности соединений или разрушение элементов;

    недопустимого понижения давления всасывания — предотвращает повышение нагрузки на сальник компрессора, вспенивание масла в картере, замерзание хладоносителя в испарителе (реле высокого и низкого давления, оснащают практически все компрессоры);

    уменьшения разности давлений (до и после насоса) в масляной системе — предотвращает аварийный износ трущихся деталей и заклинивание механизма движения компрессора, реле разности давлений контролирует разность давлений на стороне нагнетания и всасывания масляного насоса;

    недопустимого повышения температуры нагнетания — предотвращает нарушение режима смазки цилиндра и аварийный износ трущихся деталей;

    повышения температуры обмоток встроенного электродвигателя герметичных и бессальниковых хладоновых компрессоров — предотвращает перегрев обмоток, заклинивание ротора и работу на двух фазах;

    гидравлического удара (попадание жидкого холодильного агента в полость сжатия) — предотвращает серьезную аварию поршневого компрессора: нарушение плотности, а иногда и разрушение.

Виды защиты других элементов холодильной установки:

    от замерзания хладоносителя — предотвращает разрыв труб испарителя;

     переполнения линейного ресивера — предохраняет от снижения эффективности конденсатора в результате заполнения части его объема жидким холодильным агентом;

    опорожнения линейного ресивера — предотвращает прорыв газа высокого давления в испарительную систему и опасность гидравлического удара.

Предотвращение аварийной ситуации обеспечивает защита от недопустимой концентрации аммиака в помещении, что может вызвать пожар и взрыв. Концентрация аммиака (максимум 1,5 г/м3, или 0,021 % по объему) в воздухе контролируется газоанализатором.

7.2. Автоматическое регулирование и управление

Системы автоматического регулирования и управления позволяют осуществлять производственный процесс без обслуживающего персонала.

Автоматическое регулирование обеспечивает поддержание в определенных пределах параметров, характеризующих работоспособность холодильной установки.

В холодильной установке с одной испарительной системой достаточно регулировать температуру и влажность воздуха в охлаждаемой камере и перегрев пара, всасываемого в компрессор.

Регулирование перегрева пара, выходящего из испарителя, обеспечивает эффективность передачи теплоты в испарителе и безопасность работы компрессора. Автоматическое регулирование перегрева пара осуществляется путем плавного изменения подачи холодильного агента в испаритель с помощью ТРВ — терморегулирующего вентиля (рис. 12).

ТРВ устанавливают на трубопроводе, по которому жидкий холодильный агент поступает в испаритель. Чувствительный элемент (датчик) ТРВ размещают на трубопроводе, по которому отводится пар из испарителя. Если испаритель заполнен жидким холодильным агентом, то из него выходит насыщенный пар, температура которого равна температуре кипения. Регулирующий орган ТРВ закрывается. Если из испарителя выходит пар, перегрев которого превышает установку ТРВ, то регулирующий орган ТРВ должен быть открыт настолько, чтобы площадь его проходного сечения соответствовала допустимой величине перегрева.

Рис. 12. Схема регулирования перегрева пара с помощью ТРВ:

1 - датчик; 2 - термодинамическая система; 3 - регулирующий орган;

4 — камера; 5 — испаритель

Регулирование температуры охлаждаемого объекта осуществляют путем изменения производительности холодильной установки, в первую очередь испарителя и компрессора. При наличии одного объекта изменяют холодопроизводительность компрессора. В простейшем случае регулирование осуществляют ступенчато путем пуска и остановки поршневых компрессоров. В поршневых компрессорах последних модификаций имеется устройство для ступенчатого изменения производительности посредством отключения цилиндров.

Производительность поршневых компрессоров можно регулировать плавным изменением частоты вращения вала компрессора, дросселированием всасываемого в компрессор пара, перепуском пара со стороны нагнетания на линию всасывания, перепуском пара из цилиндра в полость всасывания. Производительность винтовых компрессоров можно изменять практически плавно.

Специальный    золотник, встроенный в компрессор, при перемещении уменьшает или увеличивает зону сжатия холодильного агента винтами и тем самым изменяет зависящую от зоны производительность.   На рис. 13 приведены схемы регулирования температуры воздуха в камере с помощью реле температуры и давления.

    

Рис. 13. Схема регулирования температуры воздуха в камере с помощью

реле температуры (а) и давления (б):

1 — датчик; 2 — реле; 3 — магнитный пускатель; 4 — электродвигатель;

5 — компрессор

Датчик 1 реле температуры 2 (см. рис. 13, а) ощущает изменение температуры воздуха, датчик 1 реле давления 2 (рис. 13, б) воспринимает давление кипения, и реле заданной установки дает команду магнитному пускателю 3 в зависимости от ситуации на пуск или остановку электродвигателя 4 компрессора 5.

Реле давления обеспечивает меньшую точность регулирования и применяется в некоторых типах торгового холодильного оборудования, когда продукты хранят непродолжительное время и не требуется высокой точности поддержания температуры.

Циклической работе компрессора соответствует периодическое изменение температуры кипения, конденсации холодильного агента и воздуха в помещении.

В установках с несколькими охлаждаемыми объектами, подключенными к испарительной системе с одним или несколькими компрессорами, температура воздуха в камере и перегрев пара, выходящего из испарителя, регулируются с помощью реле температуры или реле давления, изменяющих холодопроизводительность испарителя (см. рис. 12). По мере уменьшения теплопритока в охлаждаемых объектах будут выключаться реле температуры и возникает необходимость изменять производительность компрессоров. На небольших холодильных установках система автоматического управления выключает один из компрессоров или компрессор, если он один, и включает его при увеличении теплопритоков.

Регулирование влажности воздуха в камере возможно путем изменения влагопритока и влагоотвода. Влагоотвод осуществляется вследствие конденсации водяного пара из воздуха на поверхности испарителя. При уменьшении влажности воздуха, что устанавливается специальными приборами, увеличивается влагоприток путем подачи влажного воздуха, водяного пара или воды в распыленном состоянии.

Автоматическое управление обеспечивает выполнение ряда запрограммированных операций по сигналу. Например, при пуске поршневого компрессора автоматически отжимаются пластины всасывающих клапанов, открываются соленоидные вентили на трубопроводах подачи воды для охлаждения компрессора и холодильного агента в испарителе.

7.3. Агрегаты холодильных машин и установок

Агрегатом называют конструктивное объединение нескольких или всех элементов холодильной машины. Агрегаты подразделяются:

    на компрессорные (тип К) — компрессор объединяется с электродвигателем, электропусковой аппаратурой и приборами автоматики;

    компрессорно-конденсаторные (тип АК) — компрессор, конденсатор, электродвигатель и приборы автоматики смонтированы на одной станине;

    аппаратные:

    испарительно-регулирующие (тип АИР) — испаритель, ресивер, регулирующая станция и приборы автоматики;

    испарительно-конденсаторные (тип АИК) — испаритель, конденсатор, регулирующая станция с приборами автоматики;

    комплексные — объединяющие все элементы машины — компрессор, конденсатор, испаритель и весь комплекс автоматических регулирующих приборов и электропривод.

Холодильные машины могут компоноваться из отдельных агрегатов, например компрессорно-конденсаторного (АК) и испарительно-регулирующего (АИР).

Агрегаты одноступенчатого сжатия комплектуются поршневыми компрессорами.

Агрегаты двухступенчатого сжатия следует применять при температуре кипения холодильного агента -30 0С и ниже, когда отношение давлений Рк0 ≥ 9.

Двухступенчатое сжатие может осуществляться следующими способами:

    одним компрессором, часть цилиндров которого работает как ступень низкого давления, а остальные — как ступень высокого давления;

    агрегатами двухступенчатого сжатия, скомпонованными как из компрессора низкого давления, так и из компрессора высокого давления.

В качестве ступени низкого давления в двухступенчатых агрегатах используют ротационные или винтовые компрессорные агрегаты, высокого — поршневые компрессорные агрегаты. В комплект поставки агрегата входит также промежуточный сосуд с щитом приборов.

ГЛАВА 8

ОХЛАЖДАЕМЫЕ СООРУЖЕНИЯ И ХОЛОДИЛЬНОЕ ОБОРУДОВАНИЕ

8.1. Классификация холодильников для пищевых продуктов

Охлаждаемые сооружения, или холодильники, — это промышленные специально оборудованные здания с холодильной компрессорной установкой, обеспечивающей в них температурно-влажностный режим, соответствующий технологическим нормам хранения или производства пищевых продуктов.

В холодильниках поддерживают пониженную температуру воздуха (от +4 до -30 °С) и повышенную относительную влажность (80 — 95 %). Для создания и поддержания таких параметров их сооружают без окон, они имеют мощную тепловую изоляцию кровли, наружных и внутренних ограждений, дверей, оснащаются оборудованием для охлаждения помещений и устройствами для предотвращения промерзания грунта в основании здания.

Классификация холодильников по назначению. По назначению различают следующие типы холодильников: заготовительные, производственные, распределительные, базисные, для хранения овощей и фруктов, продовольственных баз, портовые, перевалочные, предприятий розничной торговли и общественного питания, смешанного назначения.

Заготовительные холодильники сооружают в районах заготовок скоропортящихся пищевых продуктов. Они предназначены для первоначальной холодильной обработки, кратковременного хранения и подготовки заготавливаемых продуктов к транспортировке на торговые предприятия или распределительные холодильники и холодильники других типов.

Производственные холодильники — составная часть пищевых предприятий (мясокомбинатов, рыбокомбинатов, консервных, молочных заводов и др.). Они осуществляют холодоснабжение технологических процессов производства. Их используют для охлаждения, замораживания и хранения сырья и готовой продукции.

Распределительные холодильники предназначены для создания и хранения резервных, сезонных, текущих и страховых запасов скоропортящегося сырья и готовой продукции, обеспечивающих ритмичность производства пищевых отраслей и равномерное снабжение пищевыми продуктами населения в течение года.

Распределительные холодильники могут быть универсальными или специализированными в зависимости от номенклатуры сохраняемых грузов. В состав распределительных холодильников, особенно вместимостью от 7000 до 20 000 т, могут входить цехи по выработке мороженого или быстрозамороженных пищевых продуктов (ягод и т.д.), сухого и водного льда, фасовке масла, изготовлению полуфабрикатов. Такие холодильники называются хладокомбинатами.

Базисные холодильники предназначены для длительного хранения резервов скоропортящихся продуктов (госрезерв). Эти холодильники сооружают в местах, которые удалены от населенных пунктов и надежно защищены.

Холодильники для хранения овощей и фруктов могут быть самостоятельными предприятиями либо входить в состав плодоовощных и продовольственных баз. Они располагаются в сельской местности, играя роль заготовительных, или в местах потребления (в городах, поселках).

Холодильники продовольственных баз предназначены для обслуживания торговой сети небольших городов. В них поступают пищевые продукты с производственных и распределительных холодильников.

Портовые холодильники используют для хранения пищевых продуктов, перевозимых водным транспортом. В них осуществляется перевалка пищевых продуктов с судов-рефрижераторов на железнодорожный и автомобильный транспорт и наоборот, поэтому их относят к группе транспортно-экспедиционных.

Перевалочные холодильники предназначены для кратковременного хранения грузов при передаче их с одного вида транспорта на другой, например с железнодорожного на автомобильный и наоборот.

Холодильники предприятий розничной торговли и общественного питания предназначены для хранения запасов продуктов, которые реализуются предприятиями в течение нескольких дней.

Холодильники смешанного назначения выполняют несколько функций. Например, производственные и портовые холодильники в крупных городах могут осуществлять одновременно функции распределительных. А портовые холодильники в рыбных портах могут выполнять роль производственных холодильников рыбокомбинатов.

Классификация холодильников по грузовместимости. По грузовместимости холодильники подразделяют на мелкие (до 100 т), малые (до 300 т), средние (до 500 т), крупные (до 10 000 т) и сверхкрупные (свыше 10 000 т).

Грузовместимость (емкость) холодильников выражают в тоннах условного груза. За условный груз принимают мясо в полутушах, имеющее при укладке на пол в штабель объемную массу 0,35 т/м3 или при размещении на подвесных путях загрузку 0,25 т на 1 м пути (исключая распределительные пути и стрелки). В зависимости от характера груза, его упаковки и укладки расчетная объемная масса груза может быть больше или меньше указанной. Условную грузовместимость холодильника определяют по формуле

Ех = Ек.о + Ек.з + Ек.п,

где Ек.о и Ек.з — условные грузовместимости всех камер хранения соответственно охлажденных и замороженных грузов, т; Ек.пусловная грузовместимость всех камер хранения охлажденного мяса, оборудованных подвесными путями, т;

Ек.о = 0,35 Vг.о;  Ек.з = 0,35 Vг.з;  Ек.п = 0,25L,

 

где  Vг.о,  Vг.з – грузовой объем камер хранения соответственно охлажденных и замороженных грузов, м3; Lгрузовая длина подвесных путей, м.

Условную грузовместимость можно перевести в фактическую (для конкретного груза) путем ее деления на коэффициент пересчета. Так, коэффициент пересчета, например, для яиц в картонных коробках принимают равным 1,35, для сливочного масла в картонных ящиках — 0,44.

При определении грузовместимости холодильника не учитывают камеры охлаждения и замораживания, охлаждаемые помещения, не предназначенные для хранения продуктов (экспедиции, накопительные камеры, загрузочные и разгрузочные помещения, льдохранилища), а также неохлаждаемые помещения (подсобные помещения, коридоры, вестибюли, лифтовые шахты и лестничные клетки).

Охлаждаемый строительный объем камеры холодильника, м3, определяют по формуле

Vc = FH,

где Fплощадь пола камеры, м2; Н — высота камеры от пола до потолка, м.

Грузовой объем камеры Vг, меньше строительного:

Vг = Fг Hг < Vc,

где Fгплощадь пола камеры, на который уложен груз, м2; Нг — грузовая высота помещения, м;

Fг = F - ∑ f,

где f — общая площадь пола, занятая колоннами, проходами и проездами, холодильным оборудованием, м2;

Hг = Hh,

где h — расстояние от верха штабеля до потолка или балок, приборов охлаждения и воздушных каналов (0,2 — 0,3 м).

Грузовместимость распределительных холодильников устанавливается на основе годового грузооборота. Имеющиеся в нашей стране распределительные холодильники рассчитаны на кратность грузооборота 4 —6 в год.

На холодильнике мясокомбинатов вместимость камер для хранения замороженного мяса должна соответствовать 40 —60-сменной производительности комбината по выработке мяса, а камер хранения охлажденного мяса — двухсуточному производственному запасу. Грузовместимость холодильника при городском молочном заводе принимается равной 10— 15-сменному объему производства продукции, подлежащей хранению.

Холодильники грузовместимостью до 700 т относятся к I классу, свыше 700 т — ко II классу капитальности здания со сроком эксплуатации 50— 100 лет, от 250 до 700 т — к III классу со сроком эксплуатации 25 — 50 лет, менее 250 т — к IV классу со сроком эксплуатации 5 — 25 лет.

Основные несущие конструкции зданий II и III классов выполняются из железобетона или стали.

Здания холодильников — одноэтажные и многоэтажные; иногда в них устраивают подвальный этаж.

В одноэтажных холодильниках, где нет необходимости поэтажного вертикального перемещения грузов, появляется возможность увеличения пролетов несущих конструкций здания до 24 — 30 м (по сравнению с сеткой колонн 6 · 6 м в многоэтажных холодильниках), в два-три раза полезной нагрузки на полы вследствие их расположения на грунте, что позволяет складировать грузы на большую высоту (10 — 20 м). Однако одноэтажные холодильники отличаются повышенными по сравнению с многоэтажными теплопритоками через наружные ограждения (на 20 — 40 %), особенно через кровлю, поверхность которой может составлять до 70 % всей поверхности их наружных ограждений.

Для многоэтажных холодильников проще решается вопрос защиты грунта в основании здания от промерзания. Они занимают меньшую площадь, теплопритоки через кровлю в общем балансе теплопоступлений в них меньше, чем в одноэтажных.

Объемно-планировочное решение и число холодильных камер того или иного назначения (структура грузовместимости) должны позволять внедрять передовую технологию холодильной обработки и хранения пищевых продуктов, организовывать рациональные грузопотоки в здании, добиваться высокого уровня механизации погрузочно-разгрузочных и транспортно-складских работ, минимальных теплопритоков и расхода холода.

В России холодильники грузовместимостью свыше 4000 т оснащены в основном камерами грузовместимостью более 400 т (свыше 90 %). Грузовместимость камер хранения замороженных продуктов (-20 °С) распределительных холодильников составляет 50 — 70%, камер хранения охлажденных продуктов (+4...-3°С) — 20 — 35%, универсальных (0...-20 °С) — 10—15%, камер замораживания (-30°С) — 0,5—1 %. Размеры камер различны. Например, в одноэтажных холодильниках камеры для хранения замороженных продуктов имеют площадь 300 — 600 м2, а камеры для хранения охлажденных продуктов — до 300 м2. В многоэтажных холодильниках площадь камер больше — до 1000 м2.

Камеры с одинаковым температурным режимом формируют блоки (отсеки) по горизонтали (на этажах) и вертикали (в здании). В подвале располагают камеры с температурой не ниже -3 0С, чтобы не промерзал грунт под полом.

Многоэтажные холодильники строят шириной до 40 м, одноэтажные — 24 — 72 м. Длина холодильника определяется в основном фронтом погрузочно-разгрузочных работ, т.е. длиной железнодорожной и автомобильной платформ, которая зависит от вместимости холодильника и грузооборота. Для холодильников вместимостью свыше 3000 т длина железнодорожной платформы должна быть не менее 120 м, т.е. достаточной для разгрузки 5-вагонной рефрижераторной секции.

Для охлаждения мяса используют до 3 камер, для замораживания — 5 - 7, для хранения охлажденного мяса — 1 - 2 (площадью 200 — 300 м2), замороженного мяса — 3 - 4 (площадью 300 — 1000 м2). В зависимости от необходимости для холодильной обработки и хранения используют универсальные камеры (от 1 до 3).

С утверждением в нашей стране рыночных отношений изменились предусмотренные в проектах условия работы холодильных предприятий, в первую очередь распределительных холодильников, спроектированных и построенных в период планово-распределительной экономики и предназначенных для единовременного длительного хранения пищевых продуктов в больших количествах.

В связи с ростом грузооборота, вызванным сокращением сроков хранения грузов, неритмичным их поступлением, малыми партиями грузов, использование имеющихся емкостей холодильников не превышает 25 — 35 %, в то время как раньше оно доходило до 100 %. Появилась необходимость в камерах небольшой вместимости, которые могли бы арендовать мелкие торговые фирмы. Необходима перепланировка существующих холодильных камер, что позволит повысить степень загрузки холодильников, снизить себестоимость грузооборота, увеличить прибыль.

Создание холодильных камер вместимостью 100 т на базе холодильных вместимостей имеющихся распределительных холодильников позволяет увеличить количество охлаждаемых объемов и эффективность их использования.

На рис. 14 представлена схема реструктуризированной холодильной камеры.

Рис. 14. Реструктуризированная холодильная камера:

1 — теплоизоляционное ограждение; 2, 9 — боковые ограждения; 3 — воздухоохладитель;

4 — передвижная перегородка; 5— пристенные батареи; 6— монорельсовые пути;

7 — двери; 8 — уплотнитель из эластичного материала; 10  автономные отсеки

При создании новых холодильников рационально компоновать их в виде модулей различной грузовместимости, приспособленных как для хладообработки грузов, так и для их хранения.

В качестве примера на рис. 15 приведена планировка модуля холодильной камеры для охлаждения, замораживания и хранения полутуш производительностью 6 т/сут хладообработки и 80 т хранения.

Такие модули могут быть использованы и на действующих производственных и распределительных холодильниках при поступлении малых партий мяса для охлаждения и замораживания туш и последующего их хранения в холодильных камерах, а также для хранения мяса при малых сроках реализации. Эти модули могут устанавливаться и на удаленных территориях, где не развиты транспортные коммуникации, для обеспечения снабжения местного населения.

Приведем технические характеристики холодильных модулей производительностью по замораживанию 1; 3 и 6 т мяса в сутки (табл. 1).

В отличие от существующих холодильников, каркасы которых выполняются из сборных железобетонных конструкций с многослойными ограждающими стенами из кирпича или железобетонных панелей с тепловой изоляцией, каркас модулей выполняется из металлических рам, профильного железа и трубных стоек, а стены — из теплоизолированных пенополиуретаном панелей типа «сэндвич». Такая конструкция    позволяет транспортировать модуль в разобранном виде по железной дороге и автомобильным транспортом.

Холодоснабжение обеспечивают 4 холодильные машины с воздушным охлаждением конденсаторов, позволяющие регулировать, температуру путем отключения отдельных агрегатов в зависимости от загрузки камер и наружной температуры. Максимальная потребляемая мощность при температуре в камерах -3°С 1,2 кВт.

Таблица 1

Технические характеристики холодильных модулей

Показатель

Производительность модулей

1/15

3/40

6/80 (тип I)

6/80 (тип II)

Габаритные размеры, мм

7640х3240х3800

9850х4200х5040

11700х8000х5040

9850х8000х5040

Тип холодильных машин и их число

МММ 6-2-4; 2

МВБ 6-2-4; 2

МКВ 40-7-2; 1

МВВ6-2-4; 4

Суммарная установленная мощность, кВт

11

11

32

22

Примечание. В числителе приведено значение производительности модулей при замораживании в т/сут, в знаменателе — при хранении в т.

Рис. 15. Планировка модуля холодильной камеры:

1 — камера охлаждения на 3 подвесных пути; 2 — камера замораживания на 3 подвесных пути; 3 — платформа с навесом; 4 — моноблочные холодильные машины; 5 — легкое металлическое укрытие; 6 — откатные утепленные двери; 7 — испарительные батареи; 8 — подвесные пути; 9  - стеллажи для субпродуктов

8.2. Охлаждающие среды, их свойства и параметры

Охлаждающей средой называется среда с более низкой, чем у продукта, температурой, при контакте с которой происходит теплообмен и снижается температура продукта. Возможно охлаждение и без непосредственного контакта со средой, когда продукт находится в упаковке.

К охлаждающим средам предъявляют ряд требований. Они не должны ухудшать товарный вид продуктов, иметь запах, быть токсичными, оказывать химическое воздействие на продукты и оборудование.

Охлаждающая среда с физической точки зрения может быть газообразной, жидкой, твердой и смешанной.

Газообразная охлаждающая среда. В холодильной обработке и хранении продовольственных товаров распространение получила воздушная среда как наиболее безопасная, технологичная и экономичная.

В комбинации с воздухом в качестве газовой охлаждающей среды на практике применяют также диоксид углерода, азот, модифицированную и регулируемую газовую среду.

Атмосферный воздух— это базовая смесь сухого воздуха и водяных паров. В состав сухого воздуха входят азот (78 %), кислород (21 %), углекислый газ (0,02 — 0,03%), а также аргон, неон, гелий, водород. Количество водяного пара, содержащегося в 1 м3 воздуха, может колебаться от долей грамма до нескольких десятков граммов, что зависит от его температуры. Водяной пар в 1,6 раза легче воздуха.

Основными физическими величинами, характеризующими воздух как охлаждающую среду, являются температура, относительная влажность, парциальное давление насыщенных паров, скорость движения воздуха.

Температура — термодинамическая величина, характеризующая тепловое состояние тела и определяющая степень его нагретости. Прямо пропорциональна кинетической энергии теплового движения молекул.

Относительная влажность воздуха характеризует степень его насыщения водяными парами и измеряется как отношение количества водяного пара, содержащегося в 1 м3 воздуха, к максимальному количеству водяного пара, которое может содержаться в этом объеме при той же температуре. Относительную влажность выражают в процентах или относительных единицах.

Большинство продуктов животного и растительного происхождения содержит значительное количество воды, причем до 90 % ее находится в свободном виде в межклеточных пространствах и в составе ткани в виде мельчайших капель. Такая вода легко удаляется из продукта и так же легко поглощается им, поэтому в камерах холодильной обработки и хранения воздух имеет высокую относительную влажность. Она устанавливается в зависимости от соотношения влагопритоков от продуктов, через ограждения, дверные проемы и влагоотвода (конденсации) на охлаждающих приборах.

С повышением температуры воздуха увеличивается его влагоудерживающая способность. Поскольку вне камеры температуры обычно выше, то содержание влаги и парциальное давление также более высокие. Под действием разности парциальных давлений поток влаги через ограждающие конструкции направлен внутрь камер, а холодный воздух, содержащий меньшее количество водяных паров, — наружу. Соотношение количества влаги, поступившей в камеры вместе с теплым воздухом и ушедшей с холодным, определяет величину тепло- и влагопритока.

При естественных условиях парциальное давление насыщенных паров над поверхностью продуктов, как правило, выше, чем в воздухе холодильной камеры, что вызывает перенос влаги от продукта к воздуху и потерю массы продукта (усушку).

Перенос влаги вследствие испарения зависит и от скорости движения воздуха. При контакте с приборами охлаждения воздух, насыщенный водяными парами, отдает часть влаги, которая оседает на них в виде капель или инея. Процесс этот носит постоянный характер. Соотношение между количеством влаги, поступившей к воздуху в камере и отданной воздухом теплоотводящим охлаждающим поверхностям, определяет установившееся значение относительной влажности воздуха в камере.

Масса испарившейся влаги G, кг, может быть определена по разности парциальных давлений у поверхности продукта и в окружающей среде:

G =β (PP'φ) ,

где β — коэффициент испарения, кг/(м2·Па·с); Р — парциальное давление насыщенного пара у поверхности продукта, Па; Р' — парциальное давление насыщенного пара в окружающей среде, Па; φ — относительная влажность воздуха в холодильной камере; Fплощадь испаряющейся поверхности, м2; τ — продолжительность процесса испарения, с.

В камерах длительного хранения продуктов поддерживают оптимальное значение относительной влажности путем автоматического регулирования количества водяного пара, подаваемого в камеру.

Газообразный диоксид углерода может применяться при всех методах холодильной обработки, а также в сочетании с другими методами консервирования.

При атмосферном давлении диоксид углерода тяжелее воздуха, он имеет меньшую удельную теплоемкость — соответственно 0,837 и 1,0006 кДж/(кг·К) и коэффициент теплопроводности соответственно 0,0137 и 0,0242 Вт/(м·К). Плотность сухого льда 1,4—1,5 кг/дм3, а объемная холодопроизводительность — в три раза выше, чем водяного. При помощи диоксида углерода можно получить широкий диапазон температур, а в смеси с эфиром до -100°С.

На диаграмме равновесия фаз диоксида углерода (рис. 16) видны три линии, выходящие из одной точки а, называемой тройной. При параметрах, соответствующих этой точке = 5,28 • 10-5 Па, t= -56,6 °С), диоксид углерода может находиться сразу в трех состояниях, а ниже 5,28 · 10-5 Па — только в твердом и газообразном. Это означает, что если к твердому диоксиду углерода подвести теплоту при давлении, меньшем указанного, то он перейдет в газообразное состояние, минуя жидкую фазу (сублимация). При дросселировании диоксида углерода с давления 2—3 МПа до атмосферного можно получить струю газообразной и мелкодисперсной (в виде снега) смеси температурой -79 °С. При разбрызгивании ее в камере и на продукты дополнительно создается сильная циркуляция и за счет испарительного эффекта отводится теплота, что способствует ускорению охлаждения. Диоксид углерода тормозит развитие микроорганизмов, что способствует созданию консервирующего эффекта при хранении продуктов. Степень его воздействия зависит от концентрации, температуры среды и вида микроорганизмов.

Рис. 16. Диаграмма равновесия фаз диоксида углерода:

1 — парообразная; 2 — твердая; 3 — жидкая; а — тройная точка

Холодильное хранение продуктов в сочетании с диоксидом углерода задерживает развитие плесневых грибов, бактерий, а эффективность процесса хранения определяется его температурой. Консервирующее действие диоксида углерода усиливает поваренная соль. Кроме того, он обладает хорошей растворимостью в жирах и продуктах с высоким содержанием жира, где находится в свободном состоянии, а при перемещении продукта в обычную среду легко выделяется. Растворяясь в жире, диоксид углерода вытесняет из него кислород, что способствует замедлению окисления жира при длительном хранении.

Перспективно применение диоксида углерода для замораживания мяса в полутушах, охлаждения и замораживания мяса после обвалки в парном виде, охлаждения и замораживания мяса птицы, замораживания полуфабрикатов и формования фаршевых изделий, упаковки продуктов в среде диоксида углерода, охлаждения транспортных средств, реализации мороженого и т.д.

Газообразный азот для охлаждения и замораживания продуктов получают из жидкого азота, который хранится в специальных резервуарах при давлении несколько выше атмосферного. Жидкий азот имеет температуру кипения -195,8 °С и в газообразном виде позволяет понижать температуру в охлаждаемом объеме очень быстро и в широком диапазоне. Поскольку воздух на 78 % состоит из азота, физические свойства этих газов различаются мало. Так, азот имеет несколько меньшие плотность и коэффициент теплопроводности, а теплоемкость выше. Теплота фазового превращения примерно в три раза ниже, чем у диоксида углерода. При охлаждении продуктов средний расход газообразного азота составляет 1 — 1,2 кг на 1 кг продукта, а с учетом сравнительно высокой стоимости его применяют для хранения особо ценных Продовольственных товаров (либо при отсутствии энергии). В тоже время его применение достаточно эффективно при предварительном охлаждении плодов и транспортировании безмашинным холодильным транспортом. При охлаждении, транспортировании I и хранении продуктов принимают меры для предотвращения подмораживания. С этой целью газ низкой температуры в специальном резервуаре перемешивают с газом из охлаждаемого помещения, понижая его температуру до необходимой. При использовании газообразного азота, так же как и диоксида углерода, резко сокращается содержание кислорода, что тормозит развитие микроорганизмов и окислительные процессы.

Жидкая охлаждающая среда. В качестве жидких охлаждающих сред для охлаждения продуктов используют ледяную воду и слабые солевые растворы, а для замораживания — водные растворы солей высокой концентрации, гликоли, жидкие азот, диоксид углерода и воздух, хладоны и т.д.

Жидкие среды обладают большей теплопроводностью и теплоемкостью, чем газообразные, поэтому при их применении существенно сокращается продолжительность холодильной обработки продуктов.

Для охлаждения продуктов до температуры, близкой к 0°С, применяют чистую ледяную воду. Охлаждают продукты методами погружения или орошения. Эти способы достаточно эффективны для охлаждения птицы, рыбы, плодов.

Более низкие температуры можно получить при использовании слабых солевых растворов — морской воды и слабых растворов хлорида натрия, магния, кальция. Температура замерзания морской воды в зависимости от содержания в ней солей колеблется от -1,5 до -3 °С. Лучшие результаты дает добавление льда в холодную воду.

Продолжительность охлаждения в холодной воде зависит от вида и объема продукта, температуры воды, скорости ее циркуляции и составляет от нескольких минут до нескольких часов.

Для замораживания продуктов применяют водные растворы солей высокой концентрации. При повышении концентрации соли температура их замерзания понижается. Самая низкая температура их замерзания называется криогидратной, а соответствующая концентрация соли — эвтектической. Такое состояние является следствием термодинамического равновесия трех фаз — раствора, соли и льда. С дальнейшим повышением содержания соли в смеси температура плавления не понижается, а повышается.

На практике применяют водные растворы солей хлорида натрия, магния и кальция, которые при эвтектической концентрации имеют минимальную температуру замерзания — соответственно -21,2, -33,6 и -55 °С. Ограниченно используют также растворы сульфата натрия, цинка и хлорида калия, криогидратная температура которых составляет соответственно -1,2, -6,5 и -11,1 °С.

Хлорид натрия дешев, обладает высокой теплопроводностью, но имеет большую коррозионную способность, при замораживании неупакованных продуктов частично их просаливает; к тому же он весьма токсичен, что ограничивает применение растворов этих солей. Как правило, их используют в закрытых системах охлаждения, которые меньше подвержены коррозии благодаря более низкому содержанию кислорода и применению специальных добавок — пассиваторов (силикат натрия, хромовая смесь и др.), уменьшающих коррозию. Наибольшее применение они находят в безмашинных способах охлаждения холодоаккумуляторами с эвтектическим раствором (эвтектические плиты) на холодильном транспорте, а также при рассольном охлаждении в старых системах охлаждения больших холодильников.

Гликоли — жидкости, водные растворы которых имеют низкую температуру замерзания. Гликоли менее агрессивны по отношению к металлам, но более вязки и менее теплопроводны. Этиленгликоль слабо ядовит, без запаха, смешивается с водой в любых соотношениях, температура замерзания чистого этиленгликоля -17,5°С, а его 70%-ного раствора в воде -67,2°С. Пропиленгликоль в водных растворах не взаимодействует с металлами, нетоксичен. Эти хладоносители очень эффективны для быстрого замораживания продуктов небольшой массы в упакованном виде.

Для замораживания продуктов до -40 °С можно использовать также дихлорметан, представляющий собой бесцветную жидкость, почти нерастворимую в воде, с температурой замерзания -6°С. К его недостаткам относятся небольшая теплоемкость и горючесть.

Жидкий азот применяют для замораживания особо ценных продуктов орошением или погружением, а также для получения газообразного азота и его использования в смеси с воздухом. Температура кипения жидкого азота -195,6°С, поэтому между замораживаемым продуктом и охлаждающей средой создается большой температурный перепад, что значительно интенсифицирует процесс. Аналогично используют жидкие диоксид углерода, воздух, хладоны.

Твердая охлаждающая среда. К твердым охлаждающим средам относят водный лед, смесь льда и соли (льдосоляное охлаждение), сухой лед.

Водный лед, полученный из пресной и морской воды, используют для охлаждения, хранения и транспортирования продуктов питания.

Широкое применение льда в качестве охлаждающей среды объясняется прежде всего его физическими свойствами, а также экономическими факторами. Температура плавления водного льда при атмосферном давлении 0 °С, удельная теплота плавления 334,4 Дж/кг, плотность 0,917 кг/м3, удельная теплоемкость 2,1 кДж/(кг • К), теплопроводность 2,3 Вт/(м · К). При переходе воды из жидкого состояния в твердое (лед) происходит увеличение объема на 9 %.

Естественный лед заготавливают путем вырезания или выпиливания крупных блоков изо льда, образовавшегося на естественных водоемах, послойного намораживания воды на горизонтальных площадках, наращивания сталактитов в градирнях. (Особым спросом для пищевых целей пользуется гренландский и антарктический лед как наиболее чистый. Возраст гренландского льда более 100 000 лет.) Лед хранят на площадках в буртах, укрытых насыпной изоляцией, и в льдохранилищах с постоянной и временной теплоизоляцией.

Искусственный лед получают путем замораживания чистой пресной или морской воды в льдогенераторах. Качество льда, его форма, размер и способ получения, хранения и доставки потребителю обусловлены назначением и спецификой применения.

Матовый лед изготавливают из питьевой воды без какой-либо ее обработки в процессе замораживания. В отличие от естественного он имеет молочный цвет, обусловленный наличием большого количества пузырьков воздуха, которые образуются в процессе превращения воды в лед. Пузырьки уменьшают проницаемость льда для световых лучей, и он становится непрозрачным.

Прозрачный лед по виду напоминает стекло. Для его получения в форму наливают воду и при помощи форсунок продувают через нее сжатый воздух. Проходя через замораживаемую воду, он захватывает и увлекает за собой пузырьки воздуха. Прозрачный лед изготавливают в виде кусков небольших размеров и используют для охлаждения напитков.

Лед с бактерицидными добавками предназначен для охлаждения рыбы, мяса, птицы и некоторых видов овощей путем непосредственного соприкосновения с ними. Бактерицидные добавки снижают обсемененность продуктов микроорганизмами.

В зависимости от формы и массы искусственный лед бывает блочный (5 — 250 кг), чешуйчатый, прессованный, трубчатый и снежный.

Блочный лед дробят на крупный, средний и мелкий.

Чешуйчатый лед получают путем напыления воды на вращающийся барабан, плиту или цилиндр, являющиеся испарителями хладагента. Вода на поверхности барабана быстро замерзает, а образовавшийся лед при его вращении срезается фрезами или ножом. Льдогенераторы производят от 60 до 5000 кг/сут такого льда. Чешуйчатый лед эффективен при охлаждении рыбы, мясных изделий, зеленых овощей, некоторых плодов. Наибольший коэффициент теплоотдачи достигается, когда при охлаждении продукты плотно соприкасаются со льдом.

В результате смешивания дробленого водного льда с различными солями помимо теплоты таяния льда поглощается теплота растворения соли в воде, что позволяет существенно понизить температуру смеси. Раствор может быть охлажден до криогидратной точки.

Льдосоляное охлаждение осуществляют как контактным, так и бесконтактным способом.

Недостатком контактного льдосоляного охлаждения является просаливание продукта, которое при длительном хранении стимулирует окисление жира, вызывает снижение товарного вида и потребительских достоинств. Бесконтактное льдосоляное охлаждение в виде полых плит с эвтектическими растворами позволяет избежать этих недостатков.

Сухой лед — твердый диоксид углерода. Производство сухого льда состоит из трех последовательных стадий: получения чистого газообразного диоксида углерода, сжижения его до образования снегообразной массы и прессования последней блоками плотностью 1400— 1500 кг/м3. Различают его производство по циклу высокого, среднего и низкого давлений.

Сухой лед из жидкого диоксида углерода также получают двумя способами: дросселированием жидкого диоксида углерода по давлению тройной точки с последующим прессованием рыхлого влажного снега в блоки сухого льда; дросселированием до атмосферного давления с уплотнением блока льда в процессе льдообразования. Как охлаждающая среда он имеет значительные преимущества перед водным льдом: холодопроизводительность на единицу массы в 1,9, а на единицу объема в 7,9 раза больше; при атмосферном давлении сухой лед переходит в газообразное состояние-, минуя жидкую фазу, что исключает увлажнение поверхности продукта. Благодаря низкой температуре сублимации сухого льда (-78,9 °С) и выделению газообразного диоксида углерода понижается концентрация кислорода у поверхности продукта, создаются неблагоприятные условия для жизнедеятельности микроорганизмов.

Сухой лед укладывают поверх и между упаковок продуктов и используют как охлаждающую среду для хранения мороженого, фруктов, ягод. Сухой дробленый лед используют в специальных системах охлаждения, для чего его помешают в металлические емкости. Продукты сублимации льда отводят в грузовой объем помещения или наружу.

Прямым эжектированием жидкого диоксида углерода получают твердый гранулированный, или снегообразный, диоксид углерода, который используют для охлаждения упакованных продуктов (мясных, рыбных, овощных).

В многоплиточных и конвейерных морозильных аппаратах в качестве теплопередающей среды используют различные металлы в виде полых плит, внутри которых циркулирует промежуточный хладоноситель. Металлы имеют высокую тепло- и температуропроводность и, непосредственно соприкасаясь с продуктом, интенсифицируют теплообмен. Наиболее широко применяют сталь, чугун, медь, алюминий и алюминиевые сплавы.

В качестве охлаждающей взвешенной в воздухе промежуточной теплопередающей среды при флюидизационном способе замораживания применяют мелкодробленый лед, полимерные шарики, а также композиции (например, смесь, состоящую из манной крупы, сахара, соли и мелкодробленого льда). Такая среда под воздействием направленного вверх с небольшой скоростью воздушного потока, создаваемого вентиляторами, превращается в кипящий слой, через который движется замораживаемый продукт. Таким способом замораживают ягоды, овощи, полуфабрикаты.

8.3. Приборы измерения и контроля параметров

охлаждающих сред и продуктов

Основные режимные параметры холодильной обработки и хранения продуктов — температура, относительная влажность воздуха и скорость его движения. Они взаимосвязаны и в совокупности позволяют достаточно точно охарактеризовать состояние охлаждающей среды и продуктов.

Наиболее важным параметром, который необходимо поддерживать в заданных пределах, является температура охлаждающей среды и продуктов.

Средства и методы контроля температурного режима занимают важное место в обеспечении нормального функционирования системы холодильной цепи. Для этого используют как классические термоизмерительные средства (термометры, термографы), так и различные специальные термоиндикаторы и электронные цифровые приборы. Условия функционирования различных звеньев холодильной цепи имеют свои особенности, поэтому необходимо, чтобы термоизмерительные средства соответствовали конкретным условиям и типам используемого холодильного оборудования. Контроль за температурой осуществляют для того, чтобы зарегистрировать отклонения от требуемого режима, а также убедиться в том, что оборудование функционирует нормально.

Приборы контроля за температурой среды и продуктов. Для этих целей используют различные виды термометров.

Жидкостные термометры расширения в зависимости от наполнителя бывают ртутные и спиртовые. Принцип их работы основан на зависимости объема жидкости от температуры.

Ртутные термометры используют для измерения температур до -30 °С, а спиртовые и толуоловые — ниже -30 °С.

Ртутные термометры отличаются высокой точностью, стабильностью в работе, простотой в использовании. Их основной недостаток — токсические свойства ртути.

Спиртовые термометры фиксируют фактическое показание температуры в момент считывания. Их преимущества — достаточно высокая точность, простота применения, безопасность в случае утечки жидкости, а также невысокая стоимость.

Жидкостные термометры имеют большую инерционность, поэтому отсчет показаний начинают через 5—10 мин после установки в твердых и жидких телах и через 30 мин — в газообразных.

Принцип действия циферблатных термометров основан на тепловом расширении газов или металлов с применением термочувствительных элементов. Такие термометры могут быть снабжены указателями минимальной и максимальной температур, а также фиксаторами этих значений с момента считывания предыдущих показаний.

В жидкокристаллических термометрах термочувствительный элемент — жидкий кристалл, цвет которого изменяется в зависимости от температуры внешней среды. Шкала такого термометра может быть откалибрована в нужном диапазоне с интервалом 1 — 2 °С.

Принцип действия цифровых электронных термометров основан на изменении термоэлектрических свойств термочувствительного элемента в зависимости от температуры внешней среды. Результаты измерения отображаются посредством цифровой индикации на дисплее. Их преимущества — высокая точность, мгновенная индикация температуры, простота и удобство использования, особенно для дистанционного контроля температуры. В качестве термочувствительного элемента используют, как правило, металлы и их сплавы (медь, платина).

Электрические термометры состоят из первичного преобразователя температуры в электрическое сопротивление и вторичного, который преобразует изменения электрических параметров в показания на шкале. Такие термометры сопротивления присоединяют к телетермометрам, логометрам или электронным мостам, что позволяет осуществлять групповой контроль температуры. В этих приборах последовательное подключение термометров сопротивления (датчиков) и регистрация температур производятся автоматически. Расстояние от датчиков для дистанционного измерения температуры может быть любым. Такие приборы особенно удобны для контроля температурного режима в различных видах стационарного и транспортного холодильного оборудования, которое можно при этом не открывать.

Термоиндикаторы бывают химическими и биологическими (биосенсорами). Принцип действия химических индикаторов основан на использовании специальных красителей, которые при активации индикатора реагируют на повышение температуры сверх определенного уровня необратимым изменением окраски.

Термографы применяют для непрерывной графической регистрации температуры внутри холодильной камеры. Он представляет собой комбинированное устройство, состоящее из термометра и приспособления для непрерывной графической регистрации температуры. Цикл работы такого прибора, как правило, составляет сутки и неделю. Применяют недельный термограф для контроля температурного режима в камерах хранения охлажденных и замороженных продуктов.

Методы и приборы контроля относительной влажности воздуха. Для измерения относительной влажности воздуха в камере используют психометрический и гигрометрический методы.

Психометрический метод основан на зависимости разности показаний сухого и мокрого термометров психрометра от степени насыщения воздуха водяными парами. У одного из термометров (мокрого) ртутный или спиртовой шарик обернут батистом или марлей, смоченными в воде. Процесс испарения влаги сопровождается затратой энергии, и температура мокрого термометра становится ниже температуры сухого. Причем психометрическая разность температур пропорциональна степени сухости воздуха. По этой разнице с помощью специальных таблиц определяют относительную влажность воздуха.

Прибор используют для измерения относительной влажности воздуха при температуре не ниже -5°С. С понижением температуры воздуха психометрическая разность температур уменьшается и точность замера снижается.

Для измерения влажности воздуха в холодильных камерах при малых и переменных скоростях его движения служит психрометр с побудительной циркуляцией — аспирационный психрометр Ассмана.

Гигрометрический метод определения влажности воздуха позволяет осуществлять ее контроль при температурах от +40 до -60 °С. Различают сорбционные гигрометры, принцип действия которых основан на изменении длины чувствительного элемента под действием на него влаги воздуха, и гигрометры, работающие по принципу определения точки росы. Метод определения влажности с помощью гигрометра достаточно точен и при отрицательных температурах.

Чувствительным элементом сорбционных гигрометров является обезжиренный человеческий волос, который при увеличении относительной влажности воздуха от 0 до 100% удлиняется на 2,5 %. Вместо волос в качестве чувствительного элемента применяют животные (жилы) и вискозные пленки, капроновые нити. Сорбционные гигрометры показывают относительную влажность воздуха непосредственно на шкале прибора и в отличие от психрометров не нуждаются в подготовке к измерениям.

Для измерения и регулирования влажности непосредственно в камере применяют пленочный регулятор влажности (ПРВ), а для дистанционного измерения — пленочный измеритель влажности (ПИВ).

Комплектные устройства дистанционного измерения, регистрации и регулирования относительной влажности воздуха состоят из электронного одно- или многоточечного автоматического моста, являющегося измерительным блоком, и электролитического влагочувствительного элемента (датчика), на котором сопротивление влагочувствительной пленки изменяется в зависимости от влажности контролируемого воздуха.

Для непрерывного графического контроля влажности воздуха служит гигрограф, записывающее устройство которого аналогично устройству термографа. Гигрографы бывают с суточным или недельным заводом.

Принцип действия гигрометров, работающих на основе измерения точки росы, заключается в определении температуры, до которой необходимо охладить (при постоянном давлении) находящийся в воздухе водяной пар, чтобы вызвать его конденсацию. Такие гигрометры называются конденсационными.

Приборы контроля скорости движения воздуха. Скорость движения воздуха при холодильной обработке продуктов измеряют механическими и электрическими анемометрами и кататермометрами. Последние применяют для измерения скорости движения воздуха менее 0,5 м/с.

Чашечные анемометры предназначены для измерения скорости движения воздуха от 1 до 50 м/с, а крыльчатые — от десятых долей до 3 — 4 м/с.

Для дистанционного контроля скорости движения воздуха используют электрические анемометры. Принцип их действия основан на охлаждении потоком воздуха проводника, подогреваемого электрическим током. Чем выше скорость движения воздуха при постоянной силе тока через проводник, тем интенсивнее отвод теплоты, а следовательно, ниже температура проводника. Температуру проводника измеряют с помощью термопары или определяют косвенным путем по изменению сопротивления.

Переносные полупроводниковые электротермоанемометры, в которых в качестве датчика применяется полупроводниковое термосопротивление, позволяют с высокой точностью определять температуру и малые скорости движения воздуха в течение нескольких секунд.

8.4. Конструкции холодильников

Конструкции холодильника подразделяют на несущие и ограждающие.

Ограждающие конструкции защищают здание от воздействия внешней среды (стены и покрытия) или условий соседних помещений (междуэтажные перекрытия в многоэтажных холодильниках, полы, внутренние стены).

Несущие конструкции для многоэтажных и одноэтажных холодильников различны.

В многоэтажных холодильниках несущей конструкцией служит каркас, наружные стены являются самонесущими.

Каркас состоит из сборных железобетонных вертикальных колонн (их сетка 6x6 м), сборных капителей, надколонных и пролетных плит. Каркас воспринимает собственную массу конструкций, массу снега на кровле, ветровую нагрузку, массу хранящихся продуктов, а также механизмов и передает эту нагрузку через фундамент на основание — грунт, на котором расположен холодильник.

Наружные стены несут нагрузку собственной массы, т.е. независимы от каркаса (самонесущие), и крепятся к каркасу. Они выполняются из полнотелого кирпича с применением теплоизоляционного слоя или специальных сборных стеновых панелей.

В одноэтажных холодильниках несущие конструкции монтируют из сборных железобетонных элементов — колонн, балок и плит покрытия. Сетка колонн 6х12 м. Стены самонесущие. Масса хранящихся на холодильнике продуктов и механизмов воспринимается полами, расположенными на грунте, а не несущей конструкцией холодильника. Это позволяет увеличить нагрузку на пол до 4000 кг/м2.

В последнее время строят одноэтажные холодильники из облегченных конструкций. В них колонны и балки (фермы) выполнены из стальных профилей. Сетка колонн имеет размер 6х24 (36) м. Элементы наружных стен и покрытия монтируют из облегченных трехслойных панелей, получивших название «сэндвич». В этом случае большие холодильные камеры могут быть без внутренних колонн. Холодильники такого типа бывают двух видов: с внутренним или наружным каркасом. Если каркас наружный, колонны и фермы остаются снаружи здания, их закрывают профилированным стальным настилом, отнесенным от них на расстояние 50 — 60 см для образования сквозного прохода вдоль стен. Панели типа «сэндвич» монтируют к каркасу изнутри.

Наружные ограждающие конструкции. В наружных стенах зданий можно выделить три основных слоя.

Наружный слой — несущий, выполняется из кирпича, оштукатуренного с одной или двух сторон, железобетонных (в многоэтажных холодильниках) или керамзитовых (в одноэтажных холодильниках) панелей. Этот слой воспринимает нагрузку собственной массы всех слоев стены и ветровую нагрузку, защищает тепловую изоляцию от механических повреждений и погодных факторов, а также создает общий вид фасада здания. Кирпичные стены крепят стальными анкерами к каркасу здания в уровнях междуэтажных перекрытий или покрытия здания.

Средний слой — изоляция из теплоизоляционных материалов. Между наружным слоем и тепловой изоляцией осуществляется пароизоляция, защищающая тепловую изоляцию от увлажнения.

Третий слой — внутренний — оштукатурен и предназначен для зашиты теплоизоляции от разрушения при грузовых работах на холодильнике и устранения контакта изоляционных материалов с пищевыми продуктами.

В стенах из облегченных панелей типа «сэндвич» наружный и внутренний слои выполняют из листового металла (гладкого или профилированного) — алюминия либо стали. Средний теплоизоляционный слой — из пенопластов. Пароизоляцию не делают. Ее функции выполняют металлические листы облицовки. Панели крепят к каркасу здания, тщательно герметизируя стыки между ними.

Покрытия холодильников после 1960-х годов сооружают совмещенными бесчердачными. Они состоят из трех конструктивных элементов: несущих конструкций (балок, ферм, плит), теплоизоляции и плоской кровли-гидроизоляции и основания под нее.

Для гидроизоляции наклеивают на горячей битумной мастике на основание 4 - 5 слоев рулонных кровельных материалов — рубероида подкладочного и покровного. Для повышения отражающей способности кровли по отношению к солнечной радиации в целях уменьшения теплопритоков в холодильник, а также защиты гидроизоляции от механических повреждений и влияния погоды поверх кровельного ковра укладывают более светлый материал, например фольгоизол. В России разработан и выпускается теплоотражательный материал ДМПС (дублированный металлизированной пленкой спецматериал), имеющий степень черноты не более 0,06. Этот материал может наноситься взамен последнего слоя кровельного покрытия, он резко уменьшает поступление тепла от солнечной радиации, что особенно важно для одноэтажных холодильников.

Внутренние ограждающие конструкции. Междуэтажные перекрытия многоэтажных холодильников выполняют трехслойными. Нижний слой составляют железобетонные плиты перекрытия. Теплоизоляцию укладывают на перекрытие сверху. Теплоизоляционную конструкцию защищают от увлажнения пароизоляцией, которая может быть сверху или снизу. Пароизоляцию относительно теплоизоляционного слоя наносят со стороны помещений с более высокой температурой. Верхний слой составляет конструкция пола, включающая бетонную стяжку (подстилающий слой) и покрытие «чистого» пола.

Подстилающий слой придает полу прочность, равномерно Распределяя нагрузку на расположенную ниже теплоизоляцию, и выравнивает основание под покрытие пола. Покрытие пола может быть из асфальтобетона, металлических, бетонных армированных, Мозаичных, шлакоситалловых плит.

При наличии подвала перекрытие между первым этажом и подвалом выполняют как междуэтажное.

Конструкция полов первого этажа в зданиях без подвалов может быть различной в зависимости от того, какое устройство применено для защиты от промерзания грунта под холодильником. При замерзании грунта его объем увеличивается, в результате создается вертикальная выталкивающая сила, воздействующая на здание. Это приводит к деформации полов и конструкций здания и даже к его разрушению. Наличие подвального этажа, в котором температура воздуха 0°С, предотвращает промерзание грунта под холодильником.

При отсутствии подвала грунт в основании защищают от промерзания путем подвода теплоты к основанию здания одним из трех способов: теплым воздухом, нагретой жидкостью или электрообогревом. Воздушная система обогрева грунта обеспечивается за счет ветрового напора подполья, т.е. отрыва полов холодильника от грунта на высоту 1 — 1,8 м, или устройством под полом воздушных каналов (шанцев), по которым летом вентилятором прогоняется теплый наружный воздух, а зимой — подогретый.

При жидкостном обогреве в железобетонную плиту основания, расположенную под полом, закладывают систему трубопроводов, по которой с помощью насоса циркулирует жидкость (этиленгликоль, смазочное масло), подогреваемая в теплообменниках паром, электроэнергией и т.д. Электрический обогрев осуществляется электронагревателями, к которым электрический ток подводится через трансформаторы, понижающие напряжение до 36 В.

Стальные стержни (арматурную проволоку) укладывают в бетонные плиты основания. Особое внимание уделяют гидроизоляции конструкции пола, которую выполняют в виде двух слоев гидроизола на горячей битумной мастике.

В зоне расположения устройств для обогрева грунта необходимо поддерживать температуру 2°С.

Межкамерные перегородки сооружают из блоков строительных материалов с хорошими теплоизоляционными свойствами (пенобетон, пеностекло) или двухслойными — кирпичная стенка (бетонные панели) и эффективная изоляция с зашитой от увлажнения пароизоляцией и оштукатуриванием внешних поверхностей.

В холодильниках устанавливают специальные изолированные двери. По контуру примыкания дверей к дверной коробке закладывают герметизирующие прокладки из упругих материалов (губчатая резина). Двери оснащают замками натяжного типа.

Прислонные двери (распашные) ручные, откатные — механические. Каркас дверей выполняют из дерева, теплоизоляция имеет толщину до 150 мм. С двух сторон двери обивают оцинкованным стальным листом. Для предотвращения примерзания дверей к дверной коробке устанавливают электрообогрев. Для уменьшения притока теплого воздуха в охлаждаемые помещения при открывании дверей их оснащают воздушными завесами или брезентовыми шторами.

Теплоизоляционные материалы. Коэффициент теплопроводности основных конструкций 0,03 — 0,05 Вт/(м • К), а объемная масса 30 — 250 кг/м3. Материалы должны иметь микропористую структуру с объемом пор 90 — 98 %, обладать свойством гидрофобности (плохо увлажняться при соприкосновении с водой), достаточной прочностью на изгиб (не менее 150 кПа) и сжатие (до 40 кПа), морозостойкостью, не поражаться грызунами и микроорганизмами, не иметь запаха и не выделять вредных летучих компонентов. Они должны быть трудносгораемыми или самозатухающими (не гореть при удалении огня).

Ранее применялись минераловатные плиты на битумном связующем (минеральная пробка), блоки и плиты пенобетона и пеностекла, а также органические материалы синтетического происхождения — пенопласты и пороплатасты, пенополистирол ПС-1, ПС-4, ПСБ и ПСБ-С, пенополиуретан ППУ-3Н, ППУ-3С, фенольно-резольный пенопласт ФРП-1 и ФРП-2, пенополивинилхлорид ПВХ-1 и др. Перспективен пенополиуретан. Его объемная масса 20 — 80 кг/м3, коэффициент теплопроводности 0,025 — 0,04 Вт / (м · К), предел прочности при изгибе 70—190 кПа.

Пенополиуретан позволяет создавать изоляционные конструкции из готовых плит и выполнять эти конструкции на месте производства работ путем заливки жидких компонентов материала в изолируемую полость, например между наружным и внутренним ограждениями стен.

Его применяют для производства облегченных панелей типа «сэндвич».

Из пароизоляционных наиболее распространены материалы, изготавливаемые на основе нефтяного битума: мастики и эмульсии различного состава, а также рулонные (рубероид, изол, фольгоизол).

8.5. Механизация погрузочно-разгрузочных работ и

транспортно-складских операций

На холодильниках выполняют следующие виды работ с грузами:

    погрузочно-разгрузочные — загрузка транспортных средств (железнодорожных вагонов, автомобилей и судов) и их разгрузка;

    транспортные внутрискладские — перемещение от места разгрузки транспортных средств (платформа, эстакада) до места складирования (холодильная камера) и от места складирования до места загрузки транспортных средств или в пределах здания холодильника — в одноэтажных холодильниках по горизонтали, в многоэтажных также и по вертикали;

    складские — укладка в штабель и его разборка.

Для сокращения качественных и количественных потерь продуктов при транспортировке и хранении, обеспечения наиболее рациональной организации грузовых работ по всей холодильной цепи, включая холодильник, продукты должны быть затарены. Тара может быть деревянная, картонная, металлическая, стеклянная, полимерная или комбинированная. Поскольку при перемещениях пищевых продуктов в пределах холодильной цепи не везде на грузовых операциях применяют механизмы, часть операций выполняют вручную, масса одного грузового места должна составлять в среднем 20 — 70 кг.

Для повышения эффективности механизации грузовых операций прибегают к пакетированию, т.е. к объединению отдельных мест в укрупненную грузовую единицу на период хранения и транспортировки. Универсальным средством пакетирования являются поддоны — плоские, стоечные и ящичные.

В соответствии с видами грузовых работ на холодильниках применяют следующие подъемно-транспортные машины и устройства: электропогрузчики, электротележки с низким подъемом вил, ленточные конвейеры, электротельферы, роликовые дорожки, автомобили-самопогрузчики. Для перемещения по вертикали в многоэтажных холодильниках используют грузовые лифты, наклонные конвейеры, для укладки и разборки штабелей — электропогрузчики и электроштабелеры, передвижные столы, ленточные конвейеры.

В последнее время на холодильниках разработаны схемы, предусматривающие комплексную механизацию всех грузовых работ с их частичной или полной автоматизацией и использованием ЭВМ. Такие схемы предполагают применение металлических стеллажей. Складирование грузов на основе стеллажей позволяет напольным электроштабелерам загружать или разгружать ячейки любого рода независимо от находящегося сверху или снизу груза. Комплексная механизация и высокая степень автоматизации грузовых работ на холодильниках достигается при использовании систем, включающих стеллажи, стеллажные краны-штабелеры, механизированные роликовые конвейеры-накопители и перегрузочные механизмы. Оборудование холодильников подобными стеллажными системами позволяет увеличить их высоту до 30 м.

Схема механизации грузовых работ зависит от вида груза, возможности его пакетирования, применяемых транспортных средств, способов реализации в сфере потребления.

Существуют схемы механизации, предусматривающие использование тары-оборудования и изотермических контейнеров, загружаемых продуктами на предприятиях-изготовителях. Перевозят грузы автомобилями-самопогрузчиками. На предприятиях торговли продукты в таре-оборудовании поступают непосредственно в торговый зал, изотермические контейнеры предварительно разгружают.

8.6. Тепловой баланс охлаждаемых помещений,

системы охлаждения холодильных камер, способы

отвода теплоты от потребителя холода

Тепловой баланс охлаждаемого помещения. Тепловой баланс достигается при равенстве теплопритока в охлаждаемое помещение QT и теплоотвода Qo, т.е. при QT = Qo.

При этом в помещении устанавливается определенная температура tp, называемая равновесной.

Уравнение теплового баланса можно записать так, Вт:

Q1 + Q2 + Q3 + Q4 + Q5 = Q0,

где Q1теплоприток через ограждения помещения, возникающий в результате разности температур с обеих сторон ограждения и под воздействием солнечной радиации; Q2 — теплоприток от грузов при их охлаждении и замораживании; Q3теплоприток с наружным воздухом при вентиляции помещения; Q4теплоприток, обусловленный эксплуатацией помещения; Q5 — теплоприток от продуктов растительного происхождения, возникающий в результате их дыхания.

Теплопритоки непостоянны во времени. Наибольшую долю в тепловом балансе составляют теплопритоки Q1 и Q2. Теплопритоки Q1 и Q3 повторяют динамику изменения температуры наружного воздуха, и их максимум приходится на самый жаркий период года. Изменение Q2 зависит от графика поступления грузов на холодильник. При значительных колебаниях тепловой нагрузки в течение суток иногда приходится строить графики теплопритоков за сутки и также выбирать расчетный период.

Различают расчетные нагрузки на компрессор и на камерное оборудование.

Производительность компрессора следует выбирать равной максимуму суммы теплопритоков в обслуживаемые помещения, хотя максимальная нагрузка каждой из обслуживаемых холодильных камер может быть разной, т.е. может не совпадать со временем максимальной нагрузки других камер.

Теплоприток Q4, обусловленный эксплуатацией помещений, — это суммарные теплопритоки от электрического освещения, работающих электродвигателей, людей, а также открывания дверей.

Теплоприток от продуктов растительного происхождения Q5 определяют с учетом теплоты дыхания плодов и овощей во время охлаждения и хранения.

По суммарным теплопритокам для каждого отдельного помещения определяют нагрузку на камерное оборудование (Qоб, необходимую площадь поверхности приборов охлаждения (тепловую нагрузку испарителей), систему воздухораспределения в каждой камере.

Системы охлаждения холодильных камер. Системы подразделяют по следующим признакам:

    виду охлаждающей среды и способу распределения рабочего вещества по объектам охлаждения — на системы непосредственного охлаждения (безнасосные и насосно-циркуляционные) и системы охлаждения с промежуточным хладоносителем (открытого и закрытого типов);

    способу размещения основного оборудования — на системы централизованного или децентрализованного охлаждения.

В зависимости от условий отвода теплоты от охлаждаемых объектов и продуктов эти системы подразделяют на системы с контактным и бесконтактным охлаждением.

В системах непосредственного охлаждения теплота от объектов отводится непосредственно холодильным агентом, протекающим в приборах охлаждения, которые одновременно выполняют роль испарителя холодильной машины и располагаются в охлаждаемых помещениях. При этом агрегатное состояние холодильного агента в таких приборах изменяется (он кипит).

Безнасосные системы охлаждений подразделяют на прямоточные и с отделителем жидкости. В прямоточных системах жидкий холодильный агент подается под действием разности давлений конденсации и кипения. Для обеспечения безопасной и устойчивой работы компрессора необходимо, чтобы в него поступал перегретый пар. Для этого количество холодильного агента, подаваемое в приборы охлаждения, должно соответствовать тепловой нагрузке Qo.

Прямоточные системы используют лишь на малых холодильных установках, преимущественно на хладоновых.

Насосно-циркуляционные системы применяют преимущественно на крупных холодильных установках. В этих системах жидкий холодильный агент в приборы охлаждения подается под давлением, создаваемым насосом.

В прямоточной системе с нижней подачей жидкого холодильного агента в приборы охлаждения используют вертикальные циркуляционные ресиверы, выполняющие одновременно функции отделителя жидкости.

Применяют также системы с верхней подачей жидкости в приборы охлаждения. Такая система наряду с определенными преимуществами (меньшая вместимость холодильного агента, отсутствие влияния гидростатического столба жидкости на температуру кипения и т.д.) обладает меньшей интенсивностью теплообмена в приборах охлаждения из-за худшей смачиваемости охлаждающей поверхности.

В системах охлаждения с промежуточным хладоносителем теплота от объектов отводится промежуточным жидким хладоносителем, протекающим в приборах охлаждения. Циркуляция хладоносителя осуществляется в приборах охлаждения центробежными насосами, при этом в приборах охлаждения хладоноситель несколько нагревается (на 2 —3°С) без изменения агрегатного состояния, а в испарителе при температуре кипения холодильного агента охлаждается.

Различают закрытые и открытые системы охлаждения хладоносителями. В закрытой системе применяют оборудование закрытого типа (кожухотрубный или кожухозмеевиковый испаритель, трубные приборы охлаждения — батареи). В открытой системе используют испарители открытого типа, что приводит к повышенной коррозии металла. Закрытые системы охлаждения получили более широкое распространение.

В системах охлаждения с промежуточным хладоносителем исключается проникновение холодильного агента в охлаждаемые помещения, так как испаритель и все его трубопроводы находятся в машинном отделении.

Оттаивание снеговой шубы. Приборы охлаждения в камерах работают в условиях, когда температура их поверхности ниже точки росы. Влага, имеющаяся в воздухе охлаждаемого помещения, осаждается на наружной поверхности приборов охлаждения в виде инея, который образует так называемую снеговую шубу, затрудняющую теплопередачу, поэтому снеговую шубу необходимо регулярно удалять.

Для очистки наружной поверхности приборов охлаждения от снеговой шубы применяют механический и тепловой способы. При механическом способе снеговую шубу сметают, сдувают воздухом, удаляют скребками. При тепловом способе снег расплавляют, а воду или подтаявший снег удаляют. Оттаивание осуществляют теплой водой, теплым воздухом, горячим паром холодильного агента (в системах непосредственного охлаждения), с помощью обогрева поверхности изнутри трубы. В последнем случае из оттаиваемой батареи предварительно удаляют жидкий холодильный агент, а затем в нее по специальному трубопроводу после маслоотделителя направляют горячие пары холодильного агента, которые, конденсируясь, нагревают стенки батареи, благодаря чему на ее наружной поверхности слой инея начинает плавиться, после чего его легко удалить.

Способы отвода теплоты от потребителя холода. Отвод теплоты от охлаждаемых (замораживаемых) объектов осуществляют путем их контакта непосредственно с рабочей средой (холодильным агентом, хладоносителем) или со средой через разделяющую их стенку либо через подвижную промежуточную среду. В качестве промежуточной среды чаще всего используют воздух или специальную газовую среду.

При контактном способе отвода теплоты объект погружают в охлаждающую среду или орошают ею. При этом агрегатное состояние жидкого азота и хладонов может изменяться (могут кипеть). Теплообмен происходит конвективным путем и характеризуется высокой интенсивностью, небольшой продолжительностью, незначительной потерей массы продукта. Недостаток — возможное ухудшение качества продуктов при непосредственном контакте с некоторыми средами.

По бесконтактному способу охлаждения работают система батарейного охлаждения, воздушная и смешанная системы охлаждения.

При батарейном охлаждении теплота отводится батареями (пристенными, потолочными) при естественной скорости движения воздуха у батарей. При воздушном охлаждении теплота отводится воздухоохладителем при принудительной циркуляции воздуха.

Различают системы охлаждения с внутрикамерным отводом теплоты и внекамерным отводом внешних теплопритоков. В первом случае приборы охлаждения устанавливают в камере, во втором в ней размещают только внутрикамерные приборы, а приборы для отвода внешних теплопритоков устанавливают вне камеры — в продухе, воздухонепроницаемо отделенном от камеры.

При воздушном охлаждении воздух перемещается вентилятором, скорость его может достигать 10 м/с и более.

При смешанной системе охлаждения камеру оборудуют батареями и воздухоохладителями.

Батарейную систему охлаждения применяют в камерах хранения неупакованных мороженых продуктов, так как при использовании воздушных систем наблюдаются повышенные потери массы.

Однако батарейная система имеет существенные недостатки — большую неравномерность полей влажности и температуры воздуха в помещении, недостаточную интенсивность теплообмена между воздухом и продуктом, воздухом и поверхностью приборов охлаждения и т.д., поэтому ее заменяют воздушной системой.

В воздушных системах различают системы канального и бесканалыюго распределения воздуха. В первом случае в помещении располагают два или один канал. В настоящее время двухканальную систему используют редко. При одноканальной системе отепленный воздух всасывается через входной патрубок вентилятора. Одноканальную систему применяют для камер охлаждения и замораживания и для камер хранения.

В бесканальной системе при подаче воздуха в помещение через насадки применяют различные сопла, скорость выходящего из них воздуха 10—15 м/с. В результате смешивания с воздухом камеры скорость потока быстро гасится.

В камерах хранения широко применяют компактные подвесные воздухоохладители. Их можно устанавливать также около стен или на антресолях либо подвешивать к потолку.

8.7. Холодильное технологическое оборудование

Для холодильной обработки пищевых продуктов небольшой толщины предназначены холодильные аппараты, которые в наибольшей степени отвечают современным производственным и технологическим требованиям. Холодильные аппараты применяют в основном для замораживания продуктов, поэтому их принято называть морозильными.

Аппараты различаются в зависимости от среды, непосредственно воспринимающей теплоту от продукта (воздух, диоксид углерода, кипящие и некипящие жидкости), устройств для транспортирования продукта в процессе холодильной обработки и др.

Аппараты, поддерживающие в заданных пределах несколько параметров воздуха (температура, влажность, скорость движения и т.д.) при холодильной обработке и хранении пищевых продуктов, относят к технологическим кондиционерам. Консервирование пищевых продуктов сублимационным методом производят в сублимационных установках.

Воздушные морозильные аппараты. Воздух можно использовать для холодильной обработки всех пищевых продуктов. Недостатком воздушных аппаратов является относительно низкая способность аккумулировать теплоту и влажность.

Воздушный морозильный аппарат представляет собой устройство, имеющее теплоизоляционное ограждение, внутри которого располагаются испарители (воздухоохладители), системы подачи воздуха, транспортирования продукта, автоматического управления и регулирования.

Испаритель выполняют из оребренных труб с переменным расстоянием между пластинами оребрения, уменьшающимся по ходу движения воздуха от 20 —30 до 10—15 мм. Переменное расстояние между пластинами оребрения обеспечивает сохранение номинальной площади живого сечения воздухоохладителя по длине, так как иней, осаждающийся на поверхности испарителя при отборе влаги из продукта, оказывается в основном на первых по ходу движения воздухорядах труб.

Система подачи воздуха включает вентиляторы (осевой, центробежный) и воздухораспределители (канал, жалюзи, отражатели).

В систему транспортирования продукта входят тележки (этажерки), конвейер непрерывного и периодического действия, поток воздуха (флюидизационный слой).

К воздушным морозильным аппаратам относятся тележечные и флюидизационные аппараты.

Внутри теплоизоляционных ограждений тележечных аппаратов находятся воздухоохладители, тележки, канал в верхней части аппарата для поперечного движения воздуха. Воздух из канала всасывается вентиляторами, проходит через воздухоохладители, обдувает продукты и вновь поступает в канал.

Во флюидизационных аппаратах продукты замораживаются в восходящем потоке воздуха, находясь во взвешенном состоянии (псевдокипящий слой). Для получения флюидизационного слоя продукты должны иметь небольшие размеры: толщину до 40 мм и длину до 125 мм, а их форма должна приближаться к сферической. Продукты в аппарате могут располагаться и транспортироваться только в потоке воздуха в лотках с перфорированным дном и на сетчатой ленте конвейера.

Флюидизационные аппараты используют для замораживания овощей (зеленый горошек, кубики моркови), фруктов (ломтики яблок), ягод (клубника, смородина) и других продуктов.

Продукты моют и подают в загрузочный механизм, имеющий вибрирующую решетку для удаления воды. Здесь их подсушивают, что предотвращает смерзание, и они попадают в первую зону аппарата, где подмораживаются во флюидизационном слое. Имея достаточную механическую прочность, продукты поступают во вторую зону, в которой домораживаются на сетчатой ленте конвейера, после чего покидают аппарат.

Каждая зона имеет автономную систему подачи воздуха. В зоне подмораживания осевые вентиляторы подают воздух через секции испарителя снизу под продукт.

Контактные морозильные аппараты. В этих аппаратах продукты замораживаются, находясь в непосредственном контакте с охлаждаемой металлической поверхностью или жидкостью (хладоносителем, холодильным агентом). При этом продукт омывается практически неподвижным воздухом только с одной стороны, что уменьшает его усушку. Площадь прикосновения охлаждающей поверхности к продукту должна быть максимальной, а термическое сопротивление зоны их контакта — минимальным. Поэтому продукт должен иметь правильную геометрическую форму и быть подпрессован давлением 15 - 70 кПа. Для интенсификации теплоотдачи от стенки к холодильному агенту предпочтительно использовать непосредственное охлаждение кипящим холодильным агентом, а не рассольное. Продукт может примерзать к поверхности металла, поэтому приходится нагревать металлическую поверхность до положительной температуры для его извлечения. Для уменьшения сил сцепления продукта с металлом можно использовать антиадгезионное покрытие поверхности металла (полиэтилен, фторопласт) или упаковку продукта.

К контактным морозильным аппаратам относятся плиточные, роторные, барабанные, ленточные, погружные и азотные аппараты.

В плиточных аппаратах в теплообмене участвуют по две стороны продукта и плиты. Плиты при этом можно располагать горизонтально, вертикально и радиально на вращающемся валу.

Плиточный аппарат с горизонтальными плитами периодического действия предназначен для замораживания продукта, в том числе и упакованного в коробки высотой 15 — 75 мм. Он имеет несущий металлический каркас, теплоизоляционное ограждение с двумя створками. Внутри расположены плиты из алюминиевого сплава, ограниченно перемещающиеся с помощью гидравлического привода. Продукт в блоках и коробках помещают между плитами, которые сближают, несколько уменьшая первоначальную высоту продукта. Величину зазора между плитами можно регулировать.

Дверные створки аппарата закрывают, после чего включается система охлаждения. После окончания процесса замораживания система охлаждения отключается, открываются дверные створки, раздвигаются плиты и продукт удаляется. Такие аппараты применяют в основном в мясной и молочной промышленности.

Для замораживания блоков рыбы применяют аппараты с вертикальными плитами.

В роторных аппаратах продукт замораживается практически непрерывно, что повышает производительность и обеспечивает постоянство тепловой нагрузки на холодильную установку.

Роторный аппарат имеет теплоизоляционное ограждение, внутри которого находятся ротор с морозильными секциями, системы охлаждения, дозирования, загрузки и разгрузки, автоматическое управление. Секция имеет три плиты из алюминиевого сплава с прямоугольными каналами для циркуляции холодильного агента.

Холодильный агент из циркуляционного ресивера подается насосом через торец полого вала ротора, распределяется по плитам, отводится через другой торец и поступает в циркуляционный ресивер. Две окантовки с продуктом размещаются в ячейках между средней (неподвижной) и боковыми (подпрессовывающими) плитами. Окантовка представляет собой рамку из алюминиевого профиля, в которую укладывают упаковочный материал, загружают продукты, формируют их и упаковывают; в ней четыре блока продукта. Окантовка одновременно является боковой гранью плиты. Плиты в секции соединены пружинами, которые обеспечивают подпрессовку продукта. После замораживания секция Устанавливается в положение для разгрузки, раскрывается, окантовка с продуктом удаляется. Окантовка с продуктом, подготовленная для замораживания, поступает в секцию, которая закрывается. Механизм поворота переводит ротор в положение для разгрузки (загрузки) следующей ячейки. Таким образом, каждая секция последовательно — сначала верхняя ячейка, а затем нижняя — загружается и разгружается за один оборот ротора. В промежутке между этими процессами осуществляется непосредственно замораживание продукта в виде блока.

Барабанные аппараты применяют для замораживания полуфабрикатов с влажной поверхностью и пастообразных продуктов. Такие продукты замораживают на поверхности вращающегося барабана.

Барабанный аппарат имеет теплоизоляционное ограждение, полый барабан из нержавеющей стали с каналами для циркуляции холодильного агента, расположенными по цилиндрической образующей, нож для скалывания продукта, электрический привод, загрузочный и разгрузочный конвейеры.

Продукт подается в аппарат загрузочным конвейером. Там он падает на поверхность вращающегося барабана, прижимается к ней лентой конвейера и примораживается. За оборот барабана продукт замораживается, скалывается ножом в верхней точке и поступает на разгрузочный конвейер.

В ленточных аппаратах продукт замораживается на конвейерной гладкой ленте из нержавеющей стали во время прохождения через теплоизолированную охлаждаемую часть аппарата.

В охлаждаемой части под лентой располагаются емкости, заполненные хладоносителем настолько, что движущаяся лента конвейера «плавает» на его поверхности. Заполнение емкостей обеспечивается непрерывной подачей охлажденного в испарителе хладоносителя. Охлажденный хладоноситель подается в емкости форсунками, расположенными ниже его уровня, благодаря чему достигается постоянство его температуры. Избыток хладоносителя отводится в испаритель.

В погружных (иммерсионных) аппаратах замораживаемые продукты находятся в жидкости (хладоносителе). Обычно это продукты большой толщины и неправильной формы (крупнокусковое мясо, тушки птицы), упакованные в термоусадочную полимерную пленку, плотно прилегающую к поверхности продукта и непроницаемую для хладоносителей. В качестве хладоносителей используют вещества, разрешенные к применению органами здравоохранения. Они должны быть нетоксичны и инертны, иметь температуру замерзания не менее чем на 10 К ниже рабочей температуры, так как вблизи температуры замерзания резко увеличивается вязкость вещества. Таким требованиям соответствуют водные растворы хлорида натрия, пропиленгликоля и хлорида кальция, нижним пределом использования которых является температура соответственно -15, -40 и -45 °С.

Конструктивно погружные аппараты представляют собой теплоизолированный корпус, внутри которого находится емкость, заполненная хладоносителем. В емкости размещается испаритель холодильной машины с мешалкой. Над испарителем ниже уровня хладоносителя находятся две сетчатые перегородки, образующие канал, по которому движется замораживаемый продукт. В верхней части аппарата, над емкостью, монтируется конвейер, тяговые цепи которого оборудованы поперечно расположенными вертикальными решетчатыми пластинами, которые, перемещаясь между сетчатыми перегородками, транспортируют продукт через емкость с хладоносителем.

Замораживают продукт в определенной последовательности. Упакованный в пленку под вакуумом, он подается из упаковочного автомата к загрузочному окну и сбрасывается в аппарат. Продукт падает в канал, образованный двумя сетчатыми перегородками, захватывается пластинами конвейера и транспортируется под уровнем хладоносителя, так как верхняя перегородка препятствует его всплытию. Не доходя до края емкости, он выводится из хладоносителя для удаления. Далее продукт поступает на моечный конвейер, где орошается водой.

Недостаток этих скороморозильных аппаратов — вероятность перекрестного заражения продукта, что исключается при оросительном или комбинированном способе охлаждения.

Особый интерес представляют аппараты, в которых замораживание продуктов осуществляется в веществах, изменяющих фазовое состояние (кипение, сублимация), так как интенсивность теплоотвода от продукта при этом резко возрастает. В этих аппаратах в качестве охлаждающих веществ обычно применяют жидкости: азот, углекислоту и хладоны. Преимущественно используют азот как наиболее дешевый и доступный. В условиях атмосферного давления он кипит при температуре -195,8 °С и имеет скрытую теплоту парообразования 199,8 кДж/кг. Азот инертен по отношению к продуктам и конструкционным материалам.

Азотные аппараты имеют легкий несущий каркас, теплоизоляционное ограждение, системы транспортирования продукта, подачи и удаления газа, охлаждения, автоматического управления и регулирования. Система охлаждения состоит из емкостей для хранения жидкого азота, распределительных форсунок, емкости для сбора неиспарившегося жидкого азота, насоса, контрольно-измерительных и регулирующих приборов. Продукт в аппарате может замораживаться погружением в жидкий азот, орошением им и в потоке газообразного азота либо при комбинации этих способов.

Замораживать продукт с положительной температурой в жидком азоте нецелесообразно из-за большой разности температур, так как в зоне контакта образуется газовая прослойка, в результате чего коэффициент теплоотдачи резко уменьшается. Кроме того, велика вероятность растрескивания и деформации продукта вследствие внутренних напряжений, возникающих из-за неравномерного по объему льдообразования.

Экономичнее замораживать продукт в аппарате с двумя зонами: предварительного замораживания газообразным азотом и домораживания в жидком азоте.

Продукт конвейером подается в первую зону, в которой 30 — 40 % теплоты отводится потоком газообразного азота. Пройдя через емкость с жидким азотом, он домораживается и выводится из аппарата. Газообразный азот удаляется из аппарата с помощью вентилятора и нагнетается в область загрузочного окна аппарата, создавая завесу на пути теплого воздуха.

Аппараты, в которых продукт орошается жидким азотом, имеют три-четыре зоны, что обеспечивает эффективный теплоотвод и снижение расхода жидкого азота на замораживание.

Сублимационные сушильные установки. В этих установках консервирование пищевых продуктов осуществляется методом сублимационной сушки, которая заключается в замораживании продукта, а затем обезвоживании в результате сублимации образующихся в нем кристаллов льда. Продукт сублимационной сушки можно хранить длительный срок (год и более в герметичной упаковке) при обычной температуре без охлаждения. При увлажнении перед употреблением продукт легко поглощает воду и его пищевые свойства, внешний вид и объем практически полностью восстанавливаются.

Технологический процесс производства продуктов сублимационной сушки проводится в несколько этапов. Продукты подготавливают к сушке: сортируют, моют, подсушивают, обрабатывают теплом, холодом, измельчают и укладывают в противни. Тепловой обработке (варке, жарке, бланшированию) подвергают значительную часть продуктов животного и растительного происхождения. Продукты, имеющие жидкую консистенцию, разливают в сплошные, а кусковые помещают в сетчатые противни, которые устанавливают на консольно расположенные полки тележек. Перед сушкой продукты замораживают или предварительно в морозильных аппаратах, или непосредственно в сублиматоре. При этом скорость замораживания должна быть такой, чтобы образующиеся кристаллы льда были не крупными, поскольку они нарушают структуру продукта, но и не мелкими, так как в этом случае затрудняется сублимация льда из ткани и увеличивается продолжительность сушки. Оптимальная кристаллическая структура льда образуется при замораживании в воздушном морозильном аппарате при температуре воздуха -30...-35 °С.

Если замораживание происходит в сублиматоре, то он сначала работает как морозильный аппарат с отводом теплоты от продукта конвекцией при атмосферном давлении, а затем как сушилка. Можно замораживать продукт в сублиматоре путем испарения влаги в вакууме, но в этом случае значительно изменяются его физико-химические и структурные свойства. Сублиматор представляет собой камеру цилиндрической или прямоугольной формы, выполненную из нержавеющей стали. В ее центре размещаются тележки с продуктом, а в непосредственной близости от продукта находятся нагревательные элементы системы теплоотвода, в которых циркулирует жидкий теплоноситель температурой -120...-170 °С. Теплота должна подводиться к продукту в количестве, достаточном для компенсации отнимаемой от него теплоты сублимации, что обеспечивает поддержание его температуры на определенном уровне.

Внутри камеры располагаются секции десублиматора, являющиеся испарителем холодильной машины, предназначенные либо только для отвода влаги, либо для замораживания продукта и последующего отвода водяного пара. Температура кипения холодильного агента в секции десублиматора составляет -40...-60 °С. Для уменьшения сопротивления переносу влаги от продукта к десублиматору давление в сублимационной установке поддерживают ниже атмосферного (от 300 до 1 Па). Вакуумная система аппаратов удаляет неконденсирующиеся газы и частично водяной пар посредством механических вакуумных насосов: пусковых и рабочих.

После окончания сушки (через 2 —9 ч при сушке фарша и ломтиков мяса) тележки с продуктом выкатывают в отделение разгрузки, продукт упаковывают. Противни и тележки перед очередной загрузкой проходят санитарную обработку.

Технологические кондиционеры. При производстве, холодильной обработке и холодильном хранении некоторых мясных, молочных и растительных продуктов, например сыров, необходимо поддерживать с большой точностью параметры воздуха: температуру, влажность, скорость движения и чистоту.

Обработка воздуха, связанная с охлаждением, осушением, нагреванием, увлажнением, а иногда и очищением от пыли и плесени, производится кондиционерами, которые представляют собой тепломассообменные аппараты. Охлаждение и осушение воздуха осуществляют в теплообменнике кондиционера (воздухоохладителе), в который подается холодильный агент или хладоноситель из автономной или централизованной системы хладоснабжения.

Нагревается воздух в другом теплообменнике (калорифере), в который подается пар из системы пароснабжения предприятия. Иногда для нагревания воздуха используют электронагреватели (ТЭНы). Воздухоохладители и калориферы выполняют из ребристо-трубных элементов с шагом оребрения 3 — 6 мм.

Увлажняет воздух пар, подаваемый через форсунки в нагнетательный воздуховод кондиционера. Кондиционеры могут иметь фильтрующее устройство, состоящее из нескольких слоев специальной фильтрующей ткани.

Кондиционеры располагают в самом кондиционируемом помещении или вне его. Они могут быть напольные и подвесные и, как правило, способны работать в режиме рециркуляции.

8.8. Холодильное торговое оборудование

На предприятиях торговли и общественного питания холод используют в целях кратковременного хранения небольших запасов пищевых продуктов, необходимых для бесперебойной работы предприятий в течение 3 — 4 дней, при производстве мороженого, для сохранения охлажденных и замороженных продуктов, полуфабрикатов и готовых блюд при их демонстрации и реализации непосредственно в торговом зале.

Для хранения запасов пищевых продуктов в зданиях этих предприятий сооружают небольшие холодильники с общим объемом камер до 300 м3 и числом камер до пяти. Назначение их различно — для хранения мяса, рыбы, овощей, фруктов. Продукты поступают в камеры с распределительных или производственных холодильников в охлажденном или замороженном состоянии. Поскольку продукты хранят непродолжительное время, температуру в камерах поддерживают более высокую, чем в распределительных холодильниках, например, в камерах для хранения мяса 0°С, рыбы -2°С, жиров, молока, молочных продуктов, яиц 1 — 3 °С, фруктов, ягод и овощей 4 — 6°С, замороженных продуктов -15°С.

Относительная влажность воздуха в камерах не регулируется и обычно составляет 80 —90 %.

Стационарные холодильники предприятий торговли и общественного питания располагают в подвале или на первом этаже вблизи торгового зала либо цехов. Для охлаждения холодильных камер применяют малые хладоновые холодильные установки непосредственного охлаждения производительностью до 15 кВт, а в отдельных случаях — средние установки. Холодильные агрегаты устанавливают в машинном отделении.

Продукты можно хранить и в сборных холодильных камерах вместимостью 5—8 м3, устанавливаемых в помещениях предприятий в дополнение к стационарным холодильникам.

Дневной запас продуктов хранится в холодильных шкафах, размещаемых в торговом зале магазинов и предприятий общественного питания. Вместимость таких шкафов не более 1 м3.

Классификация оборудования. Классифицируют торговое холодильное оборудование по ряду признаков.

В зависимости от температуры воздуха в охлаждаемом объеме различают оборудование: высокотемпературное — с температуря рой 4 — 12°С, рассчитанное на хранение, демонстрацию и продажу напитков и продуктов из тары-оборудования; среднетемпературное — предназначенное для хранения, демонстрации и продажи охлажденных продуктов при 0...-8°С; низкотемпературное — используемое для хранения, демонстрации и продажи замороженных продуктов при температуре не выше -18°С; комбинированное — со средне- и низкотемпературными отделениями.

По конструктивному решению торговое холодильное оборудование может быть выполнено как закрытое — доступ к продукту осуществляется через дверки или раздвижные створки; открытое — с доступом к продукту через открытый проем; специализированное — с контейнерной загрузкой.

Некоторые виды торгового холодильного оборудования выпускают в двух исполнениях: для районов с умеренным климатом и для южных районов. Оборудование для районов с умеренным климатом рассчитано на работу при максимальной температуре воздуха 32 °С, а для южных районов 40 0С.

По расположению холодильного агрегата различают оборудование со встроенным в корпус или с вынесенным агрегатом.

Встраивают в корпус оборудования герметичные холодильные агрегаты с поршневыми и ротационными компрессорами и воздушным конденсатором. В сборных камерах и шкафах холодильный агрегат может располагаться в верхней или нижней части корпуса.

Торговое холодильное оборудование больших объемов и комплекты, составленные из нескольких единиц оборудования, охлаждаются вынесенными холодильными агрегатами с сальниковыми и бессальниковыми компрессорами, конденсаторами, охлаждаемыми воздухом или водой.

Холодильные установки для торгового оборудования полностью автоматизируются, т. е. снабжаются устройствами для защиты от опасных режимов работы, оттаивания инея с поверхности испарителя.

Коэффициент рабочего времени агрегатов должен быть не более 0,75, уровень звуковой мощности — не более 69 дБ.

Показателями надежности являются наработка на отказ (5000 ч для встроенного агрегата и 2500 ч для вынесенного), среднее время восстановления (не более 4,5 ч), срок службы до списания (не менее 12 лет).

Различные виды и типы торгового холодильного оборудования обозначаются начальными буквами их наименования: К — камера, Ш — шкаф, П — прилавок, В — витрина, ПВ — прилавок-витрина, С — стол, X — холодильное оборудование; последняя буква обозначает тип оборудования по температурному режиму работы: В — высокотемпературное, С — среднетемпературное и Н — низкотемпературное.

Цифра после первого дефиса указывает на расположение холодильного агрегата: 1 — агрегат встроен, 2 — вынесен. Цифры после второго дефиса обозначают номинальный внутренний объем оборудования в квадратных метрах, строчная буква указывает на особенность: м — модернизированное, к — контейнерная загрузка.

Виды оборудования. Холодильные сборные камеры используют для хранения охлажденных (среднетемпературные камеры КХС) и замороженных (низкотемпературные камеры КХН) продуктов.

Холодильные сборные камеры изготавливают заводским способом в разобранном виде и собирают с помощью болтов и угольников из щитов или панелей типа «сэндвич» в единое охлаждаемое устройство на месте установки. В случае необходимости переноса камера может быть разобрана и смонтирована в другом месте. Для герметизации в стыках щитов ставят резиновую прокладку. Спереди камеры имеются запирающиеся двери, число которых зависит от числа ее отделений.

Камеры могут быть со встроенным или с вынесенным холодильным агрегатом, но в основном выпускают камеры с вынесенным агрегатом. Охлаждаемый объем камер оборудован крюками, стеллажом, напольным деревянным настилом для размещения продуктов. Испарители (в основном воздухоохладители) монтируют под потолком над стеллажами. Для освещения камеры снабжают светильниками с выключателями, расположенными снаружи.

Типоразмерный ряд камер принят на основе внутреннего объема, кратного 6 м3, например КХС-2-6, КХС-2-12, КХС-2-18.

Оттаивание воздухоохладителя осуществляется автоматически. Измерение температуры в камере — дистанционное.

Низкотемпературная камера КХН-2-6м несколько отличается от среднетемпературной. У нее каркасная конструкция, более мощная холодильная установка, в которой два холодильных агрегата, двухсекционный воздухоохладитель с двумя терморегулирующими вентилями, отделитель жидкости. Оттаивание инея осуществляется горячим паром холодильного агента.

Холодильные шкафы используют для хранения охлажденных (среднетемпературные шкафы ШХС) и замороженных (низкотемпературные шкафы ШХН) продуктов как в торговом зале, так и в производственных цехах предприятий, выпускающих полуфабрикаты и готовые блюда. Конструкция шкафов может быть бескаркасной или каркасной. Холодильный агрегат расположен в нижней или верхней части корпуса. Испаритель в виде воздухоохладителя или батареи с поддоном для сбора талой воды имеет терморегулирующий вентиль.

Холодильные прилавки служат для кратковременного хранения замороженных или охлажденных продуктов во время реализации. Конструкция прилавков может быть каркасной или бескаркасной, открытой или закрытой. В прилавках закрытого типа охлаждаемая камера имеет створки, открытого — проем во избежание утечки холодного и инфильтрации теплого воздуха из помещения.

Открытые прилавки могут быть островными — доступ к продуктам возможен с обеих сторон и пристенными — доступ к продуктам с одной стороны.

Прилавки для небольших магазинов и буфетов изготавливают со встроенными холодильными агрегатами. При большом числе работающих холодильных агрегатов температура воздуха в торговом зале и уровень шума значительно повышаются, техническое обслуживание и ремонт агрегатов на месте затруднены. Поэтому для крупных магазинов самообслуживания прилавки выполняют с вынесенными холодильными агрегатами, которые размещают в отдельном помещении — машинном отделении. В этом случае можно уменьшить число холодильных агрегатов и улучшить условия в торговом зале, но увеличиваются затраты, связанные с монтажом трубопроводов.

Для крупных магазинов самообслуживания прилавки имеют модульное (или секционное) исполнение.

Холодильные столы используются в цехах предприятий общественного питания для хранения готовых блюд, полуфабрикатов и зелени. В отличие от прилавка холодильные столы имеют верхнее ограждение.

На столе размещают горку с емкостями, охлаждаемыми змеевиковым испарителем, весы и другой торговый инвентарь. Холодильный стол имеет теплоизолированную камеру с дверкой и машинное отделение, закрытое съемными панелями. Камера охлаждается оребренной батареей.

Холодильные витрины предназначены для демонстрации и продажи охлажденных и замороженных продуктов на предприятиях торговли и общественного питания. По конструкции они могут быть каркасными и бескаркасными, со встроенным холодильным агрегатом или с вынесенным, открытыми и закрытыми, модульного (секционного) исполнения.

Холодильные прилавки-витрины выполняют две функции: демонстрации и продажи (витрина), хранения рабочего запаса (прилавок). Прилавок выполняют закрытым, оборудуют столом для весов. Для доступа в камеру прилавка имеются две изотермические дверцы.

Торговые холодильные автоматы предназначены для продажи охлажденных напитков и охлажденных или замороженных фасованных продуктов. Их выполняют в виде бескаркасного металлического шкафа с дверью, внутри которого располагаются устройства, обеспечивающие его функционирование, в том числе элементы холодильной установки: герметичный холодильный агрегат, теплоизоляционное ограждение и испаритель. В автоматах для газированной воды водоохладитель выполнен в виде толстостенного алюминиевого цилиндра, в стенке которого находятся два змеевика: в одном кипит холодильный агент, в другом протекает вода.

В автоматах для продажи соков продукт, находясь во флягах, охлаждается в теплоизолированной камере. Испаритель из гладкотрубных секций закреплен на трех стенках камеры.

Автоматы для продажи штучных продуктов имеют охлаждаемый теплоизолированный объем в верхней части шкафа. Здесь размещаются устройство для закладки и выдачи продуктов и змеевиковые оребренные батареи испарителя. В нижней части расположено машинное отделение.

8.9. Способы и оборудование безмашинного охлаждения

Охлаждение водным льдом. Этот способ охлаждения наиболее простой. Используют как естественный лед, получаемый при низкой температуре воздуха, так и искусственный водный лед, изготавливаемый с помощью холодильных машин. Достоинствами устройств ледяного охлаждения являются простота конструкции, низкая стоимость и отсутствие затрат на электроэнергию.

При температуре таяния льда 0°С температура воздуха в охлаждаемых устройствах поддерживается обычно около 6°С. Такая температура достаточна для охлаждения и кратковременного хранения пива, вод, соков и прочих напитков, хранения некоторых овощей и зелени.

Охлаждение водным льдом осуществляется тремя способами: непосредственное охлаждение, с использованием воды в качестве промежуточного теплоносителя и с использованием воздуха в качестве промежуточного теплоносителя.

При непосредственном охлаждении водным льдом охлаждаемый объект находится с ним в прямом контакте. Используют обычно дробленый мелкокусковой лед, который помещают вокруг охлаждаемого объекта. Можно также пересыпать объект льдом (при хранении некоторых овощей и зелени).

При охлаждении с использованием воды в качестве промежуточного теплоносителя лед служит для получения ледяной воды, которая подается в теплообменник для охлаждения объекта. Вода, циркулируя от охлаждаемого объекта ко льду и обратно, может непосредственно контактировать со льдом или через стенки теплообменника змеевикового либо пластинчатого типа. Последний способ охлаждения применяют в молочной промыш ленности.

Охлаждение с использованием воздуха в качестве промежуточного теплоносителя может осуществляться с естественным и механическим перемещением воздуха. В этом случае теплота от охлаждаемого объекта отводится воздухом, который передает ее при контакте со льдом. При естественной циркуляции воздуха лед может располагаться в емкостях-карманах, имеющих щели или гофрированные ограждения для увеличения поверхности теплообмена. При механической циркуляции воздуха, создаваемой вентилятором, воздух прогоняется через слой дробленого льда, что увеличивает коэффициент теплоотдачи по сравнению с естественной циркуляцией. Этот способ используют, когда при высокой относительной влажности воздуха (95 %) необходимо получить температуру от 5 °С и выше.

Естественный лед получают из водоемов, где он намерзает в зимний период, а также путем послойного намораживания на горизонтальных площадках во время морозов, используя для этого специальные установки с форсунками для мелкокапельного разбрызгивания воды.

Искусственный водный лед получают с помощью льдогенераторов трубчатого типа, где лед образуется внутри труб вертикального кожухотрубного испарителя, в межтрубном пространстве которого кипит жидкий аммиак. Вода поступает в трубы испарителя сверху через водораспределительное устройство, в которое она подается насосом из бака, смонтированного под кожухом аппарата. В отверстия труб вставляют насадки, благодаря которым вода, поступающая в трубы, закручивается и пленкой стекает по их внутренней поверхности, частично замерзая. Незамерзшая вода собирается в бак, откуда опять подается в водораспределительное устройство. Благодаря непрерывной циркуляции из воды удаляется воздух, поэтому лед получается прозрачным. Когда стенки ледяных цилиндриков достигают толщины 4 — 5 мм, намораживание прекращают, насос останавливают, испаритель отключают от всасывающей стороны машины и соединяют с ее нагнетательной стороной, в результате чего в испаритель поступают горячие пары аммиака при давлении конденсации. Эти пары вытесняют из испарителя жидкий аммиак в ресивер (сборник аммиака), прогревают стенки труб, намороженный лед отделяется от стенок и под действием силы тяжести сползает вниз. При выходе из труб ледяные цилиндрики попадают под вращающийся нож, который разрезает их на части определенной высоты. Готовый лед падает в бункер и дальше по льдоскату выводится из льдогенератора.

Существуют также льдогенераторы блочного, чешуйчатого и снежного льда. Лед в них намерзает в формочках, на поверхности барабанов или в полости, за стенками которых кипит аммиак.

Льдосоляное охлаждение. Льдосоляное охлаждение позволяет получить более низкие температуры по сравнению с охлаждением чистым льдом. Этот способ основан на использовании льда в смеси с солями. При этом одновременно происходят процессы растворения соли с образованием рассола и плавления льда с образованием воды и дальнейшим растворением соли. На плавление льда и растворение соли затрачивается теплота смеси, вследствие чего температура ее понижается.

Наиболее низкая температура смеси достигается в криогидратной точке, в которой находятся в термодинамическом равновесии все три фазы: рассол (раствор), соль и лед.

Криогидратной точке соответствует эвтектическая концентрация соли. Такая смесь называется эвтектикой. При льдосоляном охлаждении чаще всего используют смесь дробленого льда и хлорида натрия. Криогидратной точке такой смеси соответствует температура -21,2 0С при концентрации соли в растворе 23,1 %. При использовании хлорида кальция с содержанием соли в растворе 29,9 % можно получить температуру плавления         -55 °С.

Льдосоляной смесью можно охлаждать путем непосредственного контакта и используя в качестве промежуточного теплоносителя воздух, как и при охлаждении водным льдом. Кроме того, применяют охлаждение рассолом, образующимся при таянии смеси и циркулирующим через охлаждающую батарею.

В установке рассольного охлаждения с насосной циркуляцией лед периодически загружают в генератор холода. Сверху лед орошают рассолом, прошедшим охлаждающую батарею, где его температура повысилась на 2 — 3°С. В нижнюю часть генератора холода стекает охлажденный рассол с более низкой из-за таяния льда концентрацией соли. Для поддержания необходимой концентрации часть теплого рассола после охлаждающей батареи подается в бачок с солью — концентратор, из которого более насыщенный рассол перетекает в генератор холода. Концентратор периодически пополняют солью.

В нижней части генератора холода расположен вентиль, через который удаляется использованный (теплый) раствор перед новой загрузкой установки льдом и солью.

Разность температур рассола в охлаждающей батарее и воздуха в охлаждаемом объеме составляет 6 —8°С.

Существуют и установки без насоса, где циркуляция возникает самопроизвольно из-за разности объемных масс рассола вследствие изменения его концентрации при таянии льда.

Охлаждение холодоаккумуляторами с эвтектикой. В качестве холодоаккумуляторов используют металлические емкости различной формы. Эти формы заполняют эвтектикой на 90 —94 % объема.

Эвтектика представляет собой однородную смесь льда и соли, обладающую достаточно большой теплотой плавления. В качестве соли используют хлориды калия, натрия, кальция или сульфаты натрия и цинка. Эвтектический лед получают также из водного раствора пропиленгликоля. Температура плавления такого льда зависит от концентрации пропиленгликоля и может составлять от -3 до-50°С.

Холодоаккумуляторы после замораживания раствора при температуре ниже температуры плавления эвтектики размещают в охлаждаемом объеме. Поглощая теплоту, отводимую от охлаждаемого объекта, эвтектика тает при постоянной температуре. Холодоаккумуляторы используют многократно. Для этого после отепления их снова замораживают.

Холодоаккумуляторы широко применяют для охлаждения теплоизолированных контейнеров, кузовов автомобилей, а также в сочетании с машинным охлаждением в качестве дополнительного источника холода в период максимальной нагрузки на холодильное оборудование.

Охлаждение сухим льдом. Сухой лед — это диоксид углерода в твердом состоянии. Если при атмосферном давлении к сухому льду подвести теплоту, то он переходит в газообразное состояние, минуя жидкую фазу. Охлаждение сухим льдом основано на теплоотдаче охлаждаемой среды сухому льду. Удельная холодопроизводительность сухого льда при 0 °С составляет 637 кДж/кг. По сравнению с водным льдом сухой лед при 0°С обладает почти вдвое большей массовой холодопроизводительностью. Еще эффективнее соотношение при сравнении не массовой, а объемной холодопроизводительности. Объемная холодопроизводительность сухого льда при 0°С больше, чем водного, почти в три раза. Обильно выделяющийся при сублимации сухого льда газообразный диоксид углерода оказывает на большинство скоропортящихся продуктов консервирующее действие. В смеси с эфиром можно получить температуру до -100°С.

Сухой лед широко применяют при перевозках и продаже мороженого и для охлаждения транспортных средств. Охлаждение сухим льдом происходит при непосредственном контакте с охлаждаемым объектом или с использованием промежуточного теплоносителя, чаще воздуха. В последнем случае сухой лед дробят и размещают в металлических емкостях — карманах, через которые циркулирует воздух. Циркуляция воздуха может быть усилена вентилятором.

Сухой лед производят в виде блоков на предприятиях, технологические процессы которых связаны с выделением диоксида углерода. На первой стадии обеспечивают получение чистого газообразного диоксида углерода, затем его сжижают и из жидкого диоксида углерода получают твердый.

Испарительное охлаждение. Испарительное охлаждение основано на явлении парообразования над поверхностью жидкости при температуре ниже ее температуры кипения и нормальном атмосферном давлении. На превращение жидкости в пар затрачивается определенное количество тепловой энергии — теплоты парообразования (испарения). Теплота парообразования воды при 20°С равна 2455 кДж/кг. Вода может испаряться в результате отвода теплоты от нее, а также подвода теплоты к ней извне, что зависит от соотношения температуры воды и окружающей среды.

В зависимости от внешних условий теплообмена теплоту парообразования можно использовать для снижения температуры влажной поверхности и устранения (уменьшения) влияния внешних теплопритоков, вызывающих повышение температуры объекта.

Для охлаждения продуктов и грузов холодильного транспорта можно использовать также эффект испарительного охлаждения, возникающий при распылении жидкостей с помощью форсунок (например, жидких диоксида углерода и азота), с температурами кипения более низкими, чем требуется для охлаждения продуктов или воздуха.

Термоэлектрическое охлаждение. Термоэлектрический эффект проявляется в большей степени в цепях, составленных из полупроводников с электронной и дырочной проводимостью.

Во время движения дырок и электронов в разные стороны от контакта между разнородными полупроводниками происходит поглощение теплоты. Электроны дырочного полупроводника переходят в свободную зону электронного проводника, образуя пары электрон — дырка, на что затрачивается определенное количество теплоты, отнимаемое от контакта.

При движении электронов и дырок навстречу друг другу происходит их рекомбинация в месте контакта, сопровождающаяся выделением теплоты. Следовательно, если направление тока от дырочного полупроводника к электронному, выделяется теплота; если направление обратное, тепловая энергия в спае поглощается.

Величина выделяемой или поглощаемой теплоты Q в единицу времени пропорциональна силе тока I:

                                                                   Q = ПI,                                                           (29)

где П — коэффициент Пельтье.

Рассмотренное явление обратимо. Если в той же самой цепи создать в месте спаев различные температуры, то между контактами образуется разность потенциалов и возникает ток.

Величина термоэлектродвижущей силы (термоэдс) определяется формулой

                                                               Е = α (Тгх),                                                    (30)

  

где α — коэффициент термоэдс, В/К; Тг, Тх — абсолютные температуры соответственно горячего и холодного спаев, К.

Исходным конструктивным модулем термоэлектрических охлаждающих устройств (ТОУ) служит термоэлемент (ТЭЛ).

В энергетическом отношении ТОУ существенно уступают компрессионным машинам, и только при малой холодопроизводительности (около 20 Вт) холодильный коэффициент ТОУ может быть выше.

Термоэлектрическое охлаждение используют в термостатах, охладителях жидкостей и газов, осушителях воздуха, бытовых и транспортных холодильниках, кондиционерах.

РАЗДЕЛ II

ХОЛОДИЛЬНАЯ ТЕХНОЛОГИЯ ПРОДУКТОВ ПИТАНИЯ

ГЛАВА 9

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХОЛОДИЛЬНОГО

КОНСЕРВИРОВАНИЯ ПИЩЕВЫХ ПРОДУКТОВ

9.1. Принципы сохранения пищевых продуктов

Сохранение пищевых продуктов основано на способности микроорганизмов реагировать на воздействие физических, химических и биологических факторов. Изменяя условия среды и оказывая то или иное воздействие на продукт, можно регулировать состав и активность его микрофлоры.

Способ консервирования холодом основан на том, что при понижении температуры значительно снижаются жизнедеятельность микроорганизмов и активность тканевых ферментов, что приводит к замедлению как естественно протекающих в продуктах реакций (автолиз мяса, дыхание и созревание плодов), так и реакций, вызываемых деятельностью микроорганизмов.

Известно, что некоторые пищевые продукты, например мука, крупы, сахар и т.д., не портятся в обычных условиях при длительном хранении. Для кратковременного и особенно длительного хранения других продуктов требуются специальные условия, так как качество их относительно быстро ухудшается — изменяются присущие свежим продуктам вкус, запах, консистенция и цвет. Такие продукты называются скоропортящимися. К ним относятся мясо и мясопродукты, рыба и морепродукты, молоко и молочные продукты, яйца и яичные продукты, масло животное и растительные жиры, свежие плоды и овощи, дрожжи хлебопекарные, фруктовые соки и минеральные воды, пиво, виноградные и плодово-ягодные вина, сиропы, мороженое и др. В скоропортящихся продуктах содержится в значительном количестве вода, а также органические соединения, что создает благоприятные условия для развития и жизнедеятельности различных микроорганизмов и ферментов.

Совокупность свойств, от которых зависит степень использования пищевых продуктов по назначению, определяет их качество. Важно, чтобы пищевые продукты были свежими, питательными и вкусными.

Способы консервирования. Все скоропортящиеся продукты во время хранения подвергаются значительным изменениям. Если по отношению к ним не применить своевременно те или иные способы консервирования, то они относительно быстро придут в негодность. Следовательно, консервирование пищевых продуктов заключается в специальной их обработке для предохранения от порчи при хранении.

Продукты могут портиться под влиянием различных факторов:

    под действием кислорода воздуха и солнечных лучей;

    вследствие чрезмерно низкой или очень высокой влажности воздуха;

    вследствие биохимических процессов (деятельность тканевых ферментов);

    под влиянием микробиологического фактора.

Способы консервирования подразделяют на физические, физико-химические, химические, биохимические и комбинированные.

Физические способы — использование высоких и низких температур, а также ионизирующих излучений, ультрафиолетовых лучей, ультразвука и фильтрации.

Физико-химические способы — сушка, соление и использование сахара.

Химические способы основаны на применении химических веществ, безвредных для человека и не изменяющих вкус, цвет и запах продукта. В России в качестве консервантов разрешены следующие химические препараты: этиловый спирт, уксусная, сернистая, бензойная, сорбиновая кислоты и некоторые их соли, борная кислота, уротропин, отдельные антибиотики, озон, углекислый газ и ряд других.

Биохимические способы консервирования основаны на подавляющем действии молочной кислоты, образующейся в результате сбраживания сахаров продукта молочнокислыми бактериями.

Комбинированные способы — дымное и бездымное копчение, а также некоторые другие, основанные на использовании нескольких видов консервантов одновременно.

Микроорганизмы и ферменты вызывают разложение белков, гидролиз жиров, глубокие превращения углеводов и другие изменения. Поэтому основная задача консервирования пищевых продуктов сводится к ограничению или устранению разрушительного действия микроорганизмов и тканевых ферментов.

При этом внешнее воздействие на биологические факторы порчи может иметь различные формы — биоз, анабиоз, ценоанабиоз и абиоз.

Биоз — поддержание жизненных процессов в продуктах, т. е использование их иммунитета. На этом принципе основано хранение плодов и овощей, живой рыбы, предубойное содержаний скота и птицы.

Анабиоз — замедление, подавление жизнедеятельности микроорганизмов и активности тканевых ферментов при помощи холодильной обработки и хранения, сушения и вяления, маринования, консервирования в сахарном сиропе и т.д.

Ценоанабиоз — подавление вредной микрофлоры за счет создания условий для жизнедеятельности полезной микрофлоры, способствующей сохранению продуктов (квашение, молочнокислое Л спиртовое брожение при производстве и хранении кисломолочных продуктов).

Абиоз — прекращение всякой жизнедеятельности, в том числе и микроорганизмов, в продуктах (высокотемпературная обработка, применение лучистой энергии, токов высокой и сверхвысокой частот, антибиотиков, антисептиков и др.).

При выборе способа консервирования стремятся добиться максимальной сохраняемости продукта, а также экономичности процесса. Поэтому в практической деятельности часто способы консервирования комбинируют.

Консервирование с помощью искусственного холода. Лучший способ консервирования — тот, который позволяет длительное время хранить продукт с наименьшими потерями им пищевой ценности и массы. Этим требованиям в наибольшей степени отвечает консервирование с помощью искусственного холода. Холод более экономичен по сравнению с тепловой обработкой по затратам энергии (кВт·ч/т):

Охлаждение............................................................. 15

Замораживание........................................................100     Пастеризация...........................................................130 Стерилизация...........................................................235

Сушка........................................................................660

В зависимости от решаемых задач продукты подвергаются разной глубине холодильной обработки (охлаждение, переохлаждение, подмораживание, замораживание, домораживание), а для восстановления натуральных свойств к ним подводят теплоту (отепление, размораживание).

Охлаждением продуктов называется процесс отвода теплоты от них с понижением их температуры не ниже криоскопической. На практике все более широко применяют предварительное охлаждение, предшествующее любому последующему этапу технологического цикла обработки холодом и существенно снижающее Потери при хранении.

Переохлаждение — это состояние продукта, вызванное понижением его температуры ниже криоскопической без возникновения кристаллов влаги. Оно бывает устойчивым или неустойчивым в зависимости от теплофизических свойств продукта и температурных режимов окружающей среды.

Подмораживание — процесс, сопровождающийся частичной кристаллизацией влаги в поверхностном слое, основная масса продукта находится в переохлажденном состоянии. Продолжительность хранения продуктов в подмороженном виде увеличивается в 2 — 2,5 раза по сравнению с охлажденными.

Замораживание — отвод теплоты от продуктов с понижением температуры ниже криоскопической при кристаллизации большей части воды, содержащейся в продуктах. Это предопределяет их сохранность при длительном холодильном хранении.

Домораживание — понижение температуры до заданного уровня при отводе теплоты от частично замороженного продукта.

Отепление — подвод теплоты к охлажденным продуктам с повышением их температуры до температуры окружающей среды или несколько ниже.

Размораживание — подвод теплоты к продуктам в целях декристаллизации содержащегося в них льда. В конце процесса температура в толще продукта составляет 0 °С и выше, кристаллы льда плавятся, ткани поглощают влагу. Цель размораживания — максимальное поглощение влаги тканями и полное восстановление первоначальных свойств продуктов.

Продолжительность холодильной обработки исчисляется минутами, часами, иногда сутками и влияет на качество и сохранность продуктов при последующем холодильном хранении.

Холодильное хранение — это хранение продуктов после холодильной обработки при заданном режиме в камере.

Под режимом холодильной обработки и хранения понимают совокупность параметров и условий, влияющих на качество продуктов (температура, относительная влажность, скорость движения воздуха, состав среды, укладка, продолжительность процесса).

Особое значение при холодильном хранении, в первую очередь длительном, имеет сокращение потерь массы продуктов, что достигается строгим соблюдением режима и применением дополнительных методов.

Эффективное использование холодильного консервирования требует создания единой непрерывной холодильной цепи на протяжении всего пути продукта от производителя к потребителю.

9.2. Влияние низких температур на рост

и размножение микроорганизмов

Различают три группы микроорганизмов по отношению к температурным условиям: термофилы, мезофилы и психрофилы.

Термофилы — микроорганизмы, развивающиеся при температурах 20 — 80 °С, оптимально 50 — 75 °С; мезофилы живут при 5 – 57 °С, а психрофилы способны расти при относительно низких температурах — от +10 до -10°С.

Нас интересуют именно психрофилы, развивающиеся в условиях холодильного хранения пищевых продуктов. Различают факультативные психрофилы, условия жизни которых приближаются к режиму мезофилов, и облигатные, т.е. строгие психрофилы, способные размножаться только при низких температурах.

Психрофильные бактерии активно размножаются на продуктах с небольшой кислотностью — мясе, рыбе, некислых молочных и овощных продуктах при -5... -8 °С. Большинство плесеней — психрофильные, они довольно активно развиваются на замороженных продуктах. Плесени, так же как и дрожжи, размножаются главным образом на кислых продуктах. Являясь аэробами, плесени растут вплоть до температуры -2...-3°С, при более низкой температуре их размножение прекращается. Но отдельные виды плесеней прекращают размножение лишь при -8...-10°С.

Рост и размножение могут происходить при разных температурах. Так, размножение бактерий Е. coli прекращается при 7,3 °С, в то время как их рост продолжается.

Рассмотрим восемь фаз роста микроорганизмов (рис. 17):

1) лаг-фаза (а) — стадия развития, которая характеризуется постоянством числа бактериальных клеток. Микроорганизмы привыкают к внешней среде, вследствие чего может произойти уменьшение их количества, особенно при пониженных температурах. Продолжительность лаг-фазы зависит от вида микроорганизмов, питательной среды и температуры;

Рис. 17. Кривая фаз роста бактерий

2) фаза ускорения роста (б), в которой происходит бурное размножение микроорганизмов;

3) логарифмическая фаза роста (в), в которой идет быстрое, с постоянной скоростью размножение бактериальных клеток;

4)  фаза замедления роста (г);

5) фаза максимальной концентрации микроорганизмов, или максимальная стационарная фаза (д). На этой стадии концентрация микроорганизмов при определенных не меняющихся условиях внешней среды сравнительно постоянна. Их развитие и отмирание протекают с одинаковой интенсивностью. Опытные данные показывают, что в этой фазе максимальное число бактериальных клеток в 1 г продукта 109— 1010;

6) фаза ускорения гибели микроорганизмов (е), в которой создаются неблагоприятные условия для обмена веществ;

7)   фаза гибели (ж), в течение которой микроорганизмы под влиянием собственных продуктов жизнедеятельности быстро отмирают;

8)  конечная стационарная фаза (фаза адаптации) (з).

Изучение различных фаз роста микроорганизмов имеет большое практическое значение. Так, продолжительность фаз а и б сокращается, если количество исходных микроорганизмов велико, т.е. при большей начальной обсемененности пищевых продуктов скорее наступает логарифмическая фаза.

Наиболее существенно понижение температуры влияет на продолжительность лаг-фазы и характер логарифмической фазы. Чем ниже температура, тем продолжительнее лаг-фаза и более пологи участки логарифмической фазы, т.е. микроорганизмы размножаются медленнее.

Микроорганизмы бывают чувствительными, умеренно устойчивыми и нечувствительными к отрицательной температуре. Особенно чувствительны к низким температурам вегетативные клетки плесневых грибов и дрожжей. При отрицательных температурах легко погибают грамотрицательные бактерии, принадлежащие к группе Е. coli, бактерии группы PseudomonasAchromobacter и Salmonella. Более устойчивы к низким температурам грамположительные бактерии, в том числе S. aureus; наиболее устойчивы почвенные бактерии. Споры бацилл Clostridium нечувствительны к низким температурам, тогда как споры плесневых грибов проявляют умеренную устойчивость.

Устойчивость микроорганизмов к действию отрицательных температур зависит от трех факторов: температуры, скорости ее понижения и времени воздействия.

Действие отрицательных температур на микроорганизмы проявляется в изменении состояния воды в микробной клетке. Максимальное повреждающее действие оказывает внутриклеточное образование льда. Это приводит к повышению концентрации внутри- и внеклеточных растворов, что ведет к денатурации белков и нарушению барьеров проницаемости.

Однако повреждение микроорганизмов холодом может происходить и без образования льда. Гибель бактериальных клеток в результате холодового шока происходит при очень быстром охлаждении из-за низкого осмотического давления. При этом губительное действие низких температур связано с нарушением нуклеиновых кислот и целостности липидных мембран.

Устойчивость микроорганизмов к отрицательным температурам зависит и от продолжительности воздействия холода. В начале замораживания число бактериальных клеток быстро уменьшается, затем гибель микроорганизмов замедляется и, наконец, остаются устойчивые к низким температурам клетки, количество которых зависит от условий замораживания, индивидуальной устойчивости вида микробов.

Необходимо иметь в виду, что развитие микроорганизмов при температуре выше      -10°С возможно и это может привести к снижению качества хранящегося продукта и даже к его порче. Так при длительном хранении мороженого мяса при температуре выше -8°С могут развиваться плесневые грибы. Они растут отдельными колониями, которые впоследствии увеличиваются и уплотняются. Мицелий гриба проникает в толщу мяса, начинается спороношение. На поверхности продукта появляются белые, серые или черные пятна, в толще накапливаются продукты жизнедеятельности плесеней, появляется затхлый запах. Аналогичные процессы протекают при хранении мороженой рыбы и других продуктов.

В замороженных ягодах или фруктово-ягодных соках, хранящихся при температуре выше -8 °С, образуется продукт жизнедеятельности дрожжей — спирт.

9.3. Воздействие низких температур на клетки,

ткани и организмы

Как правило, действие низких температур на клетки, ткани и организмы носит в большей или меньшей степени повреждающий характер. Это происходит, во-первых, вследствие глубокого нарушения обмена веществ при быстром понижении температуры, получившего название «температурный шок». Такое явление объясняется нарушением динамического равновесия биохимических процессов вследствие того, что активность разных ферментов при резком снижении температуры различна. В результате в клетках накапливаются промежуточные, зачастую токсичные продукты обмена веществ (метаболиты). Если процесс охлаждения проводится быстро, то может наступить гибель биологического объекта.

При постепенном снижении температуры организм может адаптироваться, т.е. приспособиться к изменяющимся условиям, и в этом случае выжить. Очень часто температурный шок сопровождается структурными изменениями в клетках. Внезапное охлаждение может привести к значительному увеличению вязкости протоплазмы — до гелеобразования с последующим отделением жидкой фазы.

При охлаждении биологических объектов ниже температур, при которых происходит превращение воды в лед, основную роль начинают играть повреждающие факторы процессов кристаллообразования — льдообразование.

Процесс льдообразования при постепенном понижении температуры начинается после более или менее глубокого переохлаждения. Сначала кристаллы льда возникают в межклеточной жидкости, концентрация растворенных веществ которой вследствие вымерзания воды начинает увеличиваться. Разность между концентрациями растворов в межклеточном пространстве и внутри клеток приводит к перемещению влаги из клеток к кристаллам в межклеточном пространстве. Таким образом, увеличиваются кристаллы снаружи клеток, а сами клетки обезвоживаются. В дальнейшем процесс кристаллизации может начаться и в самих клетках. При оттаивании рассмотренные явления развиваются в обратной последовательности.

В случае быстрого понижения температуры биологических объектов кристаллизация может происходить одновременно внутри клеток и в окружающей их межклеточной жидкости.

В процессе хранения наблюдается миграционная перекристаллизация — увеличение размеров крупных кристаллов вследствие исчезновения мелких.

Одна из причин повреждения клеток — механическое действие кристаллов льда, которое приводит к их разрыву, проколам и порезам. Кроме того, из-за разрастания кристаллов льда в межклеточном пространстве уменьшаются размеры клетки, что вызывает сжатие и образование складок в оболочке, в результате чего может произойти механическое повреждение протоплазмы. При поступлении воды в клетку во время размораживания тесно соприкасающиеся слои протоплазмы начинают расходиться, при этом протоплазма часто отрывается от оболочки, что приводит к повреждению структуры клетки.

Еще более сильным повреждающим фактором является денатурация протоплазматических белков, вызванная обезвоживанием клетки в результате вымораживания воды. Так, сближение молекул белка в результате обезвоживания приводит к тому, что сульфгидрильные группы (—SH—) отдельных белковых молекул вступают во взаимодействие и образуют дисульфидные связи. При оттаивании вода проникает в клетки и начинает раздвигать белковые молекулы. Однако вследствие того что энергия образовавшихся дисульфидных связей выше, чем энергия водородных связей в структуре самой молекулы, происходит разрыв не дисульфидных, а водородных связей, что вызывает развертывание макромолекул белка, т.е. их денатурацию.

В результате вымораживания воды обезвоживание клетки может достичь такой степени, что различные протоплазматические структуры придут в соприкосновение. При этом возможен перенос ряда активных структурных компонентов с одной поверхности на другую. Например, соприкосновение сложных мембран митохондрий, на которых расположены ферменты в строго установленной последовательности, может нарушить энергетические процессы и привести к гибели клетки.

Наконец, еще один фактор повреждающего действия — повышение концентрации минеральных солей (электролитов) в незамерзшей клеточной жидкости при обезвоживании в процессе кристаллообразования. Под действием образующихся концентрированных солевых растворов белки денатурируют, причем развитие процесса зависит не только от концентрации солей, но и от рН среды. К повышению концентрации солей особенно чувствительны липопротеиды, из которых в основном состоят мембраны клеток.

Поскольку с повышением концентрации солевых растворов возрастает осмотическое давление, весь комплекс явлений, развивающихся при замораживании, получил название «осмотический шок».

Установлено, что многие органические вещества и некоторые биологические объекты лучше сохраняются при быстром и сверхбыстром замораживании. Например, диски концентрированного желатинового геля, быстро замороженные в жидком воздухе, не изменяются в результате кристаллообразования, а также под действием повреждающих факторов. Яичный желток утрачивает биологическую активность после замораживания до    -6 °С, но не повреждается при замораживании в жидком азоте и быстром оттаивании в теплой ртути.

В ряде случаев активность ферментов в значительной степени сохраняется при быстром и сверхбыстром замораживании. При быстром замораживании остается меньше времени для воздействия солевых растворов на структуру белков молекул живых клеток. Микроскопические исследования биологических объектов показали также, что их структура сохраняется тем лучше, чем быстрее происходит замораживание.

Сохранение жизнеспособности биологических объектов при сверхбыстром замораживании обусловлено витрификацией (стеклообразованием) воды в протоплазме клеток и последующей девитрификацией (расстеклованием) при быстром отеплении. В ходе этих процессов не происходит перегруппировки молекул воды, что способствует сохранению тонкой структуры протоплазмы клеток. Витрификация представляет собой глубокое переохлаждение жидкости, при котором в ней отсутствует кристаллическая решетка.

Исследования показали, что даже при охлаждении с максимальной скоростью биологические объекты всегда содержат наряду с аморфной стеклообразной массой затвердевшей жидкости мельчайшие кристаллы льда.

Степень повреждающего действия низких температур зависит от места образования кристаллов льда в клетках и тканях биологических объектов. Так, при внутриклеточной кристаллизации интенсивно разрушаются элементы протоплазмы. При замораживании растительных организмов образование льда внутри клеток всегда приводит к их гибели. Подавляющее большинство клеток Животного организма также не выдерживает внутриклеточного льдообразования.

Благодаря использованию защитных веществ (глицерин, сахарный сироп, полиэтиленоксид и др.) возможны очень высокие скорости замораживания.

9.4. Вспомогательные средства, применяемые

при холодильной обработке и хранении

Для сохранения качества, снижения потерь и увеличения продолжительности хранения продуктов кроме холодильной обработки применяют дополнительные средства: ультрафиолетовое и ионизирующие излучения, антисептики, регулируемую (РГС) и модифицированную (МГС) газовые среды и т.д.

Ультрафиолетовое излучение широко применяют на пищевых и торговых предприятиях для санации воздуха и поверхностного слоя продуктов. Оно охватывает область электромагнитных колебаний с длиной волны 136 — 4000 Å, обладает большой энергией и поэтому оказывает сильное химическое, физическое и биологическое воздействие. В зависимости от длины волны действие различных участков ультрафиолетового спектра неодинаково. Наибольшим воздействием на бактерии, подавляющим их жизнедеятельность, обладают лучи с длиной волны от 2000 до 2950 Å. Эта область называется бактерицидной. Максимум бактерицидного действия оказывают лучи с длиной волны около 2600 Å.

Бактерицидные ламповые источники ультрафиолетовых лучей, выпускаемые промышленностью, представляют собой газоразрядные лампы низкого давления с самонакаливающимися катодами. Они работают от электрической сети переменного тока напряжением 127 и 220 В.

Под воздействием УФ-лучей происходит отмирание микроорганизмов только в поверхностном слое продукта, так как проникающая способность лучей не превышает 0,1 мм. Стерилизующий эффект облучения зависит от микробиологической загрязненности продукта и стадии развития микроорганизмов. В сочетании с низкими положительными температурами он значительно увеличивает сроки хранения (в два раза и более) охлажденного мяса, яиц, полукопченых и копченых колбасных изделий, сыров, цитрусовых и других продуктов.

Под влиянием облучения рост микрофлоры резко замедляется, т.е. проявляется бактериостатический эффект, который зависит не только от дозы облучения, но и от состояния внешней среды. С понижением температуры среды продолжительность бактериостатического эффекта увеличивается.

Ионизирующие излучения вследствие высокой энергии способны вызвать ионизацию электрически нейтральных атомов и молекул и стимулировать в облученных материалах однотипные химические реакции.

Обработку продуктов проводят в специальных аппаратах (например, кобальтовых пушках), где происходит радиоактивный распад различных изотопов. При этом в продуктах возникают химические превращения, связанные в первую очередь с ионизацией воды, что вызывает образование свободных радикалов с высокой химической активностью, приводит к изменениям в клетках. При определенной дозировке лучи подавляют жизнедеятельность микроорганизмов. На практике радиационную обработку проводят в виде радаппертизации — до полной стерильности продукта; радуризации — до ограниченного подавления микрофлоры; радисидации — до выборочного подавления микроорганизмов какого-либо типа для увеличения продолжительности хранения продукта.

Применение антисептиков основано на их свойстве подавлять микроорганизмы, предохраняя продукты от порчи. Проникая в клетку микроорганизма, эти вещества вступают во взаимодействие с белками протоплазмы, что приводит к их гибели.

К антисептикам предъявляют ряд требований, важнейшими из которых являются безвредность и минимальные изменения потребительских свойств продуктов.

В качестве антисептиков применяют сорбиновую и бензойную кислоты, пероксид водорода, диоксид серы и др.

Регулируемая газовая среда как способ консервирования заключается в хранении плодов и овощей в атмосфере с пониженной концентрацией кислорода и более высокой, чем в воздухе, концентрацией диоксида углерода. Снижение концентрации кислорода и повышение концентрации диоксида углерода замедляют процесс газовыделения в два-три раза и уменьшают теплоту дыхания до 3 — 5 %.

Благодаря использованию РГС для хранения плодов и овощей в охлажденном состоянии увеличиваются сроки их созревания и хранения, уменьшаются потери. Применяют газовые среды разных типов, различающиеся содержанием кислорода и углекислого газа.

Состав газовой смеси зависит от вида сырья, сорта, условий выращивания и других факторов.

Модифицированная газовая среда — разновидность РГС. В этом случае газовый состав при хранении плодов и овощей создается в упаковке продукта и выдерживается с меньшей точностью.

Для поддержания стабильности газовой среды внутри упаковки при хранении плодов используют селективно-проницаемые мембраны из пленок с высокой газопроницаемостью, поглотители углекислого газа и паров воды, перфорированные пленочные материалы. Часто эти способы комбинируют, применяя дополнительную обработку плодов, поглотители этилена, альдегидов и других веществ, выделяемых плодами при хранении и влияющих на их качество.

Селективно-проницаемые мембраны обычно изготавливают из силиконового каучука — пленочного материала с хорошей газопроницаемостью. В таких упаковках создается модифицированная микроатмосфера, которую в определенной степени можно регулировать, подбирая пленки с различной селективной проницаемостью для газов, сорта и количество плодов, а также температурно-влажностный режим в хранилищах.

Хранение яблок в полиэтиленовых контейнерах с силоксановыми мембранами позволяет значительно увеличить выход товарных плодов и снизить потери, сократить их естественную убыль.

Для мелкой потребительской упаковки свежих фруктов, овощей и ягод используют различные пленочные материалы в зависимости от интенсивности дыхания объекта.

Модифицированную газовую атмосферу применяют также для консервирования сырья животного происхождения и продуктов его переработки. Повышенные концентрации углекислого газа подавляют жизненные функции микроорганизмов охлажденного мяса и мясопродуктов и процессы окисления жира.

При переработке мяса в качестве вспомогательного консервирующего средства применяют препарат «Бомаль», в состав которого входят ацетат, цитрат и L-аскорбат натрия, L-аскорбиновая кислота. Препарат стабилизирует количество микроорганизмов, способствует увеличению сроков хранения мясопродуктов, сохранению их свежести и улучшению органолептических свойств.

ГЛАВА 10

ВИДЫ ХОЛОДИЛЬНОЙ ОБРАБОТКИ

ПИЩЕВЫХ ПРОДУКТОВ

10.1. Охлаждение

Охлажденным считается продукт, в толще которого поддерживается температура от 0 до 4°С.

Основная задача охлаждения заключается в создании неблагоприятных условий для развития микробиальных и ферментативных процессов в пищевых продуктах. Цель охлаждения — сохранение первоначального качества продукта в течение определенного времени.

Для многих продуктов, особенно растительного происхождения, являющихся живыми организмами, выбор конечной температуры охлаждения, при которой они будут храниться, имеет большое значение. Повышение или понижение температуры хранения на несколько градусов по сравнению с оптимальной приводит к преждевременной порче продуктов. Каждый способ охлаждения оценивают по совокупности признаков, среди которых первостепенное значение имеют качество получаемого продукта и экономичность способа охлаждения.

Способы охлаждения пищевых продуктов можно подразделить на три основные группы: в контакте с воздухом, в контакте с жидкостью (или тающим льдом, снегом), в контакте с инертными газами. Эти способы различаются по величине коэффициентов теплоотдачи на поверхности охлаждаемого продукта.

Пищевые продукты чаще всего охлаждают в воздухе, несмотря на то, что коэффициент теплоотдачи в нем самый малый.

Когда указывают режимы охлаждения в воздухе, то называют обычно его температуру, среднюю скорость движения и относительную влажность.

Поле относительной влажности воздуха в камерах охлаждения, так же как и в камерах замораживания, очень неравномерно. Если поверхность охлаждаемого тела влажная, то воздух около нее находится в состоянии насыщения при температуре тела, а у поверхности охлаждающих приборов — при температуре их теплообменной поверхности. Поскольку эти две поверхности имеют разную температуру, неодинаково и влагосодержание воздуха около них. Все это приводит к испарению влаги с поверхности продукта и конденсации ее из воздуха на поверхности охлаждающих приборов. По мере увеличения скорости движения воздуха в камере уменьшается неравномерность поля относительной влажности и температуры.

Деление способов охлаждения пищевых продуктов на три основные группы не исключает многообразия вариантов режимов охлаждения в пределах каждой группы.

При охлаждении любым способом преследуют две цели:

    охлаждение продукта сразу после производства;

    интенсивное охлаждение.

На скорость охлаждения продукта влияет ряд факторов: его размеры; величина поверхности; масса; удельная теплоемкость; начальная и конечная температуры и многое другое.

Удельная теплоемкость с пищевых продуктов колеблется от 2,1 до 4,1 кДж/(кг • К). Чем больше влаги в продукте, тем выше теплоемкость. Например, теплоемкость растительного масла 2,1 кДж/ (кг • К), а овощей 4,1 кДж/(кг • К).

Пищевые продукты имеют в основном небольшую теплопроводность. Поэтому они охлаждаются относительно медленно. Теплопроводность λ свиного сала 0,14 Вт/(м · К), мяса животных около 0,47 Вт/(м · К).

Поскольку охлаждение пищевых продуктов в воздухе сопровождается испарением влаги с поверхности и выделением внутренней теплоты за счет биологических процессов, оно представляет собой комплексный процесс тепло- и массообмена.

10.2. Замораживание

К замораживанию пищевых продуктов прибегают для достижения следующих целей:

    обеспечения сохранности во время длительного хранения;

    отделения влаги при концентрировании жидких пищевых продуктов;

    изменения физических свойств продуктов (твердость, хрупкость и др.) при подготовке к дальнейшим технологическим операциям;

    при сублимационной сушке;

    производства своеобразных пищевых продуктов и придания им специфических вкусовых и товарных качеств (мороженое, пельмени, другие быстрозамороженные продукты).

Основное отличие результатов замораживания от результатов охлаждения состоит в том, что замороженные продукты более стойки при хранении, чем охлажденные, поскольку вода в них превращается в лед. При этом прекращается диффузионное перемещение растворимых в воде веществ и, следовательно, питание микроорганизмов и протекание биохимических (ферментативных) реакций. Эффект замораживания достигается при температуре в центре продукта -6 °С и ниже.

Результативный эффект превращения воды в лед родственен эффекту обезвоживания. При этом уменьшается количество влаги, необходимой для жизнедеятельности микроорганизмов и осуществления биохимических реакций.

Различие между замораживанием и сушкой состоит в том, что при замораживании влага превращается в лед, не будучи удаленной из продукта, тогда как при сушке она удаляется.

Замороженный продукт отличается от охлажденного рядом внешних и физических признаков и свойств:

    твердостью — результат превращения воды в лед;

    яркостью окраски — результат оптических эффектов, вызываемых кристаллизацией льда;

    уменьшением удельного веса — следствие расширения воды при замораживании;

    изменением термодинамических характеристик (теплоемкость, теплопроводность, температуропроводность).

В технологическом отношении замораживание в отличие от охлаждения вызывает необратимые изменения в продукте, препятствующие полному восстановлению его первоначальных свойств. Поэтому в таком случае говорят о неполной обратимости пищевых продуктов.

При замораживании в отличие от охлаждения происходят частичное перераспределение влаги, травмирование тканей продукта кристаллами льда, а также иногда частичная денатурация белка.

В итоге вкусовые и питательные достоинства продукта могут снизиться, если замораживание осуществлено неправильно. Замораживая продукт, необходимо стремиться прежде всего к сохранению его питательных и вкусовых свойств. Для этого необходимо добиться максимальной обратимости явлений, происходящих в процессе замораживания.

Механизм вымерзания воды (теория кристаллообразования).

Процесс замораживания тканей — это прежде всего замерзание тканевой жидкости, т.е. раствора небольшой концентрации.

Поскольку в воде продукта растворены минеральные и органические вещества, фазовое превращение начинается при отводе теплоты в момент нарушения состояния переохлаждения. При этом понижение температуры сопровождается соответствующим изменением концентрации жидкого раствора.

Криоскопическая температура зависит от концентрации раствора, степени диссоциации растворенных веществ и свойств растворения. Для продуктов животного происхождения она ниже 0 0С: мясного сока -1 ...-1,5 °С, крови -0,55...-0,56 °С, яичного белка -0,45 °С, яичного желтка -0,65 °С.

При замораживании разбавленных растворов вначале вымерзает чистая вода.

Количество воды в мясе убойных животных составляет 53 — 75%, а в рыбе — 55 — 80%. По существующей классификации в пищевых продуктах различают связанную (гидратационную) и свободную воду. Содержание связанной воды почти постоянно и составляет около 10 % ее общего количества в продукте. Дипольные частицы воды посредством адсорбции прочно связаны с ионами и полимерными группами белков. При замораживании продуктов связанная вода не участвует в фазовых превращениях.

Свободная вода находится в межклеточном пространстве продукта и является растворителем минеральных веществ. При температуре ниже криоскопической она превращается в лед. По мере вымораживания свободной воды увеличивается концентрация солей в незамерзшем межклеточном растворе, что приводит к смещению криоскопической температуры в область более низких температур. При этом вымораживание воды происходит постепенно, с повышением концентрации оставшегося раствора. При достижении концентрации, определенной для данного раствора (тканевого сока), он застывает в сплошную твердую массу, называемую эвтектикой; температура ее образования называется эвтектической.

В холодильной технологии воду, перешедшую в твердое состояние, принято называть вымороженной. Количество вымороженной воды определяется отношением влаги, превращенной в лед, к общему ее количеству:

                                                        ω = Gл / (Gл + GВ),                                                   (31)

где Gл, GB — количество соответственно льда и влаги при данной температуре, доли единицы.

Экспериментально установлено, что примерно 3/4 воды, содержащейся в мясе, птице, рыбе и яйцах, и до половины в картофеле вымораживается при температуре до -4 0С. Считается, что полное вымораживание свободной воды продовольственных продуктов происходит при снижении их температуры до -30 0С.

На качество замороженных продуктов большое влияние оказывают размер, форма и распределение кристаллов льда, образующихся в продукте при замораживании. Характер кристаллообразования зависит от состояния клеточных оболочек, концентрации растворенных веществ в клетках, степени гидратации белков и других свойств продукта. Большое значение имеет также скорость замораживания.

Скорость замораживания определяется скоростью продвижения границы раздела между жидкой и отвердевшей фазами от поверхности замораживаемого продукта к его термическому центру. Следует различать среднюю и номинальную скорости замораживания.

Хорошие результаты обеспечивает скорость замораживания, при которой продолжительность действия критических температур не превышает 30 мин.

Существует несколько способов определения скорости замораживания.

Скорость замораживания V рассматривается как промежуток времени τ, необходимый для понижения температуры продукта в пределах некоторого интервала температур Δt, °С/мин:

                                                                    V = Δt / τ.                                                      (32)

Иногда под скоростью замораживания понимают количество вымороженной воды в объекте за какой-то промежуток времени, % /мин:

                                                                    V / τ.                                                        (33)

Наиболее часто среднюю скорость рассматривают как отношение пути к продолжительности прохождения фронта кристаллообразования от поверхности продукта до геометрического центра и выражают.

Скорость замораживания зависит от температуры, толщины продукта и способа замораживания. По Планку, она выражается формулой

                                             dx/ = (tкр - to) / [(x / λ) + (1 /α)],                                 (34)

где tкp, t0соответственно криоскопическая температура продукта и температура охлаждающей среды, °С; qудельное количество теплоты, отводимой от продукта при замораживании, кДж/кг; γ — плотность продукта, кг/м3; х — определяющий размер продукта, м; λ — коэффициент теплопроводности продукта, Вт/(кг · К); α — коэффициент теплоотдачи.

По скорости замораживание подразделяют на медленное (до 0,01 м/ч), ускоренное (от 0,01 до 0,05 м/ч), быстрое (от 0,05 до 0,1 м/ч) и сверхбыстрое (более 0,1 м/ч).

При медленном замораживании сначала образуются кристаллы-затравки льда из межклеточного (межволоконного) тканевого сока относительно невысокой концентрации. Повышенное давление пара над переохлажденной, но еще не затвердевшей жидкостью внутри клетки вызывает диффузию водяного пара через стенки клеток, что приводит к конденсации его на поверхности кристаллов-затравок и образованию крупных кристаллов льда вне клеток, травмирующих ткани. Медленное замораживание приводит к полной потере свободной воды внутри клеток (процесс криоосмоса, или криоконцентрации). В замороженной таким образом ткани внутри клеток, потерявших упругость, находится незамерзший раствор, а весь образовавшийся лед — вне клеток. При этом количество поврежденных клеток превышает 70 %.

При быстром замораживании образуются мелкие кристаллы льда, которые равномерно распределены по всей толще замораживаемого продукта. Вода почти без перемещения переходит в лед по месту ее нахождения до замораживания. При этом травмирующее действие кристаллов на клетки и ткани минимально.

При ультрабыстром замораживании 90 % всех кристаллов льда формируется внутри клеток при минимальном повреждении ткани.

Существует несколько теорий, объясняющих механизм повреждения клеток и тканей при замораживании различными факторами:

    механическим — давление образующихся кристаллов льда на строение тканей;

    осмотическим — чрезмерная дегидратация клеток;

    химическим — гиперконцентрация солей как вне, так и внутри клеток.

Все эти факторы — результат кристаллизации воды и перехода ее в лед.

В последнее время наибольшее распространение получили две теории — механическая и солевой денатурации (химическая).

По механической теории травмирование клеток вызывает механическое действие кристаллов льда, особенно внеклеточных.

При медленном замораживании процесс кристаллообразования начинается при определенной температуре (ниже криоскопической) прежде всего в межклеточных и межволоконных пространствах, жидкость в которых имеет более высокую криоскопическую точку из-за меньшей концентрации солей и органических веществ и слабее связана с гидрофильными коллоидами продукта.

Появление кристаллов льда приводит к увеличению концентрации веществ в слое раствора, прилегающем к поверхности кристаллов. Вследствие разности концентраций раствора внутри и вне клеток возникают отток влаги из волокон и клеток и намораживание ее на поверхности кристаллов.

Расширение воды при превращении ее в лед 9приводит к сдавливанию волокон и клеток, что вызывает дополнительный отток воды из них. Этот процесс продолжается до тех пор, пока температура не станет достаточно низкой, чтобы началось кристаллообразование внутри волокон и клеток, где остается уже небольшое количество влаги в концентрированном растворе.

При быстром замораживании теплота отводится более интенсивно. Прежде чем успеет активно развиться миграционный процесс, температура внутри волокон и клеток становится достаточно низкой, чтобы в соответствии с концентрацией раствора началось кристаллообразование. Таким образом, быстрое замораживание приводит к затвердеванию влаги без значительного ее перераспределения.

Повышение скорости замораживания сокращает миграцию влаги, вызывает образование большого количества мельчайших кристаллов, равномерно размещенных как в межклеточном пространстве, так и в клетках.

Если температуру понижать очень быстро (v100 °С/мин) до -120...-160 °С и ниже, кристаллизация почти не происходит. Вода переходит в стекловидное состояние. Температура, при которой скорость роста кристаллов уменьшается, равна приблизительно     -90 °С.

Стекловидное состояние отличается от кристаллического тем, что молекулы вещества распределяются хаотически, а не по определенному стереометрическому плану, как это происходит при кристаллизации.

При стекловидном состоянии ткань приобретает некоторые свойства твердого тела. Это состояние менее устойчиво в термодинамическом смысле, поэтому со временем при небольшом повышении температуры наблюдается постепенный переход из стекловидного к кристаллическому состоянию, сопровождающийся небольшим выделением теплоты (девитрификация).

При витрификации помимо аморфного (стекловидного) льда образуется небольшое количество мельчайших его кристаллов, неуловимых при оптических методах исследования. Это явление получило название «аморфизация».

Стекловидную массу можно сохранить только при температуре ниже -130°С.

При быстром нагревании стекловидное состояние может перейти в жидкое, минуя кристаллическое. Таким образом, минуя структурный распад, который наступает после внутриклеточной кристаллизации, а также при внутренней миграционной перекристаллизации после первоначального процесса замораживания, можно с помощью сверхбыстрого охлаждения предотвратить травмы клеток и достиг обратимости процесса, от которого зависит максимальное сохранение качества продукта.

Теория солевой денатурации (химическая) основывается на том, что в процессе льдообразования происходит перераспределение влаги в ткани и увеличивается концентрация солей в клетках.

Под действием повышенной концентрации солей и ряда химических и коллоидных процессов происходят денатурационные Изменения белковых веществ.

При медленном замораживании концентрация солевых растворов в продукте выше и время их воздействия больше. А степень денатурации белков зависит от времени воздействия на них гипертонических растворов. При сверхбыстром замораживании это время сводится к минимуму. Денатурация белков происходит при температурах, близких к точке эвтектики растворов, и падении рН. Изменение величины рН в биологическом объекте при замораживании приводит к изменениям активности ферментов и скорости денатурации белка.

Факторы, влияющие на качество замораживаемых продуктов. Быстрое замораживание не всегда обеспечивает высокое качество продуктов. Так, замораживание некоторых видов пищевых продуктов (большого объема) в криогенных жидкостях протекает с большой скоростью, но одновременно в продуктах сильно повышается внутреннее давление замерзшего клеточного сока. Повышение давления внутри замораживаемого продукта тем больше, чем больше его размеры, быстрее проводится замораживание и больше разность температур между внешним и внутренним слоями продукта.

Особенно высокое внутреннее давление создается при замораживании сверхбыстрым способом. Результат — повреждения внешних перемороженных слоев продукта, причем они не связаны с повреждениями, обусловленными образованием крупных кристаллов при медленном замораживании. Эти повреждения происходят, когда температура на поверхности продукта становится намного ниже криоскопической, а в центральных слоях еще отмечается стадия льдообразования. Увеличение объема центральных замерзающих слоев приводит к возрастанию внутреннего давления в продукте, и когда плотный, неэластичный внешний первый слой не в состоянии выдержать внутреннее давление, происходит разрыв замораживаемого продукта.

Решающее влияние на скорость замораживания оказывают температура охлаждающей среды, толщина замораживаемого продукта и коэффициент теплоотдачи от его поверхности.

Скорость замораживания влияет и на процессы массообмена, приводящие к усушке продукта. Пока на поверхности продукта не началось льдообразование, с нее испаряется капельно-жидкая влага, а затем происходит сублимация льда, что и приводит к его Усушке.

Потери воды при замораживании могут колебаться в широких Пределах — от 0,3 до 2 % и более в зависимости от температуры охлаждающей среды, начальной и конечной температур продукта, вида среды, метода и скорости замораживания, а также специфических свойств отдельных продуктов.

Для представления массообмена используют различные математические модели, описывающие явление испарения влаги с поверхности продукта (основаны на законе Дальтона), однако они включают большое число величин, определение которых затруднено. Поэтому массообмен в холодильной камере можно определять не по величине массы влаги, отданной продуктом, а по массе влаги, усвоенной воздухом в зависимости от его температуры, давления и равновесной влажности.

Из термодинамики следует, что масса влаги Δg, усвоенная воздухом, зависит от количества теплоты, подведенной к нему, температуры и относительной влажности воздуха, кг:

                                                            Δg = Q (1/εd) / r (t),                                              (35)

где Q — количество теплоты, воспроизведенное за счет сухого и влажного теплообмена, кВт; 1/εdдоля теплоты, затраченной на массообмен; εdкоэффициент влагопереноса; r(t) — скрытая теплота испарения, зависящая от температуры, кВт/кг.

Усушка резко уменьшается, если на поверхности натурального продукта имеется влагонепроницаемый слой (корочка подсыхания, слой жировой ткани). При измельчении продуктов усушка резко возрастает. Потери при замораживании плодов и овощей зависят от их размера, свойств кожицы, а также техники замораживания.

При замораживании бесконтактным способом в паронепроницаемой упаковке исключаются потери водяного пара через слой упаковочного материала. Однако при наличии свободных пространств между продуктом и упаковкой на внутренней поверхности упаковочного материала образуется иней в результате конденсации и замерзания водяного пара (внутренняя усушка).

Изменения, происходящие в продукте при замораживании. При любом способе и скорости замораживания в клетке могут происходить сложные изменения, связанные с нарушением ее структуры. Так, понижение температуры продукта до -8...-10°С сопровождается интенсивным льдообразованием и, следовательно, резким увеличением концентрации химических соединений в жидкой фазе продукта, уменьшением ее объема, сближением молекул. При этом создаются условия для структурных перестроек белковых молекул, возникновения межмолекулярных реакций, агрегации.

Нарушения пространственной структуры макрочастиц белков идентифицируются с денатурацией, а ее внешним проявлением является выделение тканевого сока при размораживании. Развитие этих процессов стимулирует повышение концентрации электролитов в жидкой фазе. Зона максимального развития денатурационных изменений совпадает с температурной зоной максимальной кристаллизации тканевого раствора. Денатурация наблюдается прежде всего в белках фракции актомиозина при отсутствии изменений белков саркоплазмы.

Важным фактором, влияющим на сохранение нативной структуры белков, является связанная вода. Однако это касается только воды, связанной с белками тех групп, в которых энергия связей выше энергии, высвобождающейся при переходе в кристаллическую структуру льда. Белковые вещества с более низкой энергией связи теряют воду, которая вымораживается, а молекулы белка агрегируются. Стабильные белковые вещества удерживают воду, позволяющую им сохранить нативную структуру и после размораживания.

Процессы денатурации белков при замораживании в определенной степени замедляются физическими изменениями образовавшегося раствора, в частности вязкости, ионной силы, давления водяных паров, рН. При введении некоторых веществ (этиленгликоль, пропиленгликоль, сахар, глицерин) процесс денатурации замедляется. Предполагается, что эти вещества усиливают прочность водородных мостиков и связей воды. При их введении снижается количество вымораживаемой воды.

Разрабатываются пищевые системы, включающие замораживаемый продукт и структурирующие вещества, состоящие из натуральных пищевых компонентов. Использование таких пищевых систем позволяет получить сырье для замораживания, которое не теряет высокой биологической ценности при температуре замораживания -20 °С, длительном хранении в замороженном виде и исключает потери при размораживании.

Изменение белков продуктов происходит также в результате их гидролиза под действием тканевых ферментов, которые высвобождаются при повреждении клеток.

Изменения жиров при замораживании и хранении — результат ферментативных и окислительных процессов. С понижением температуры замораживания скорость химических реакций резко замедляется, соответственно замедляются и химические процессы порчи жиров. Скорость ферментативных процессов при понижении температуры в определенном интервале может и возрастать.

При замораживании снижаются количество и активность микроорганизмов, однако добиться их полного уничтожения невозможно. Устойчивость микробной клетки к замораживанию зависит от вида микроорганизма, стадии его развития, среды обитания, а также скорости и температуры замораживания.

Влияние качества исходного сырья на качество замороженных продуктов. Получение высококачественных замороженных мясных Продуктов возможно только при исходном высоком качестве сырья, которое определяется многими факторами: условиями роста, кормления, упитанностью, физиологическим состоянием животного перед убоем, совершенством операций по убою и разделке туш. Критерием качества мясного сырья принято также считать степень развития в сырье послеубойных процессов.

Мясо, замороженное в стадии окоченения, более низкого качества, так как белки такого мяса обладают наименьшей растворимостью, набухаемостью и влагоудерживающей способностью.

Замороженное парное мясо обладает высокой степенью обратимости, а белки имеют хорошую набухаемость и влагоудерживающую способность, так как резко тормозятся автолитические процессы, не наблюдается также изменений гистологической структуры тканей. Такое мясо имеет наилучшие потребительские свойства.

Существенным фактором, определяющим качество сырья и его стойкость при последующем хранении, является конечная температура продукта. При ее снижении уменьшаются потери белковых и экстрактивных веществ с мясным соком. Так, мясо животных или рыбы, замороженное до -50...-70 °С, а затем размороженное, незначительно отличается по показателям качества от мяса, не подвергавшегося замораживанию.

В то же время различия в качестве продуктов, замороженных разными методами, после нескольких месяцев хранения при температуре -20 °С практически исчезают вследствие рекристаллизации. Движущей силой этого процесса может быть колебание температуры во время хранения, а также разность давлений водяных паров на поверхности мелких и крупных кристаллов. На поверхности мелких кристаллов давление водяных паров всегда выше, вследствие чего происходит миграция влаги от более мелких кристаллов к крупным. При низких температурах процесс рекристаллизации протекает медленно, но по мере повышения температуры рекристаллизация заметно ускоряется.

К каждому продукту требуется индивидуальный подход при определении метода и технического средства замораживания.

10.3. Подмораживание

Подмораживание заключается в понижении температуры продуктов немного ниже криоскопической для улучшения условий хранения. Поскольку понижение температуры продуктов сопровождается некоторым льдообразованием, термин «переохлаждение» неточен, более правильный — «подмораживание».

Наиболее широко подмораживанием пользуются для сохранения рыбы, мяса птицы и плодов.

Существуют два основных способа подмораживания продуктов:

    продукт помещают в камеру, где поддерживается температура до -3 °С; температура его постепенно понижается, приближаясь к температуре воздуха камеры; так подмораживают рыбу, птицу, мясо, зимние сорта яблок;

    продукт помещают в морозильную камеру, где замораживается его периферийный слой ограниченной толщины; после перемещения продукта в камеру хранения с температурой -2...-З 0С вследствие внутреннего теплообмена во всем объеме продукта устанавливается температура, одинаковая с температурой хранения. Этот способ рекомендуется для подмораживания мяса и рыбы, причем подмораживать рыбу можно контактным способом в рассоле.

Исследования показали, что в подмороженных продуктах при хранении происходят те же изменения, что и при охлаждении, но протекают они медленнее, поэтому продолжительность хранения в подмороженном состоянии может быть больше, чем в охлажденном. Отмечено, что усушка при этом меньше, а качество существенно не отличается от качества охлажденных продуктов.

При подмораживании в морозильных камерах с последующим внутренним теплообменом до выравнивания температур в объеме продукта происходят теплофизические процессы, существенно отличные от происходящих при медленном подмораживании. Такой процесс делится на два взаимосвязанных этапа. На первом этапе при интенсивном отводе теплоты замораживается слой некоторой толщины и в продукте создается резко неравномерное температурное поле. На втором этапе происходит внутренний теплообмен в продукте при очень слабом теплообмене с воздухом камеры хранения. Это приводит к приблизительному равенству температуры продукта и камеры. Внутренний теплообмен в продукте можно рассчитывать как адиабатный.

Интенсивный отвод теплоты от продукта на первом этапе приводит к быстрому замораживанию периферийного слоя, что благоприятно в технологическом отношении и удобно организационно, так как время, необходимое для пребывания продукта в морозильной камере, невелико. Последнее обстоятельство позволяет выполнить в непрерывном потоке подмораживание таких продуктов, как мясные полутуши и четвертины. Нет необходимости ограничивать на первом уровне понижение температуры поверхности мяса из-за опасения уменьшить обратимость процесса.

Температура поверхности должна быть такой, чтобы после выравнивания температура в толще была -1 ...-2 °С.

Таким образом, чем интенсивнее процесс теплообмена на первом этапе, тем совершеннее он в технологическом и организационном отношении.

ГЛАВА 11

ТЕПЛОФИЗИЧЕСКИЕ ПАРАМЕТРЫ ПИЩЕВЫХ ПРОДУКТОВ

И ИХ ИЗМЕНЕНИЯ ПРИ ХОЛОДИЛЬНОЙ ОБРАБОТКЕ

11.1. Теплофизические параметры пищевых продуктов

К наиболее важным теплофизическим параметрам пищевых продуктов относят удельную теплоемкость, теплопроводность, температуропроводность, энтальпию, криоскопическую температуру, плотность, равновесное давление пара.

Удельной теплоемкостью называется величина, равная количеству теплоты, необходимому для нагревания или охлаждения 1 кг вещества на 1 К.

Если известны состав продуктов питания и удельная теплоемкость отдельных компонентов, то удельную теплоемкость продукта с рассчитывают по закону аддитивности:

                                            c = g1c1 + g2c2 + … + gncn,                                                  (36)

где g1, g2, ..., gnмассовые доли компонентов; с1, с2, ..., сn — удельные теплоемкости компонентов, Дж/(кг • К).

Продукты условно считаются двухкомпонентными системами, состоящими из воды и сухих веществ, тогда удельную теплоемкость определяют по формуле, Дж/(кг · К),

                                                    с = cBW+ cc (1 - W),                                                     (37)

где св, сс — удельные теплоемкости соответственно воды и сухих веществ, Дж/(кг • К); W,    (1 - W) — массовые доли соответственно воды и сухих веществ.

Теплоемкость сухих веществ большинства продуктов животного происхождения колеблется от 1,34 до 1,68 кДж/(кг • К), растительных составляет около 0,91 кДж/(кг • К). При отсутствии экспериментальных данных эти значения можно применять для оценки теплоемкости продуктов.

Изменение удельной теплоемкости продуктов в интервале температур замораживания определяется в основном начальным их влагосодержанием и количеством вымороженной воды. Теплоемкость убывает с понижением температуры, стремясь к нулю при абсолютном нуле температуры (третий закон термодинамики).

Теплопроводность — один из видов теплопередачи, при котором перенос теплоты имеет атомно-молекулярный характер. Явления теплопроводности возникают при разности температур между отдельными участками тела (продукта). Количественно теплопроводность характеризуется коэффициентом теплопроводности и измеряется в Вт/(м · К).

Коэффициент теплопроводности численно равен количеству теплоты, переносимому через единицу площади поверхности в единицу времени, при градиенте температуры, равном 1:

                                                        λ = λB W + λC (1W),                                              (38)

где λB — коэффициент теплопроводности воды, равный 0,6 Вт/(м · К); λCкоэффициент теплопроводности сухих веществ, равный 0,26 Вт/(м • К).

Теплопроводность продуктов с понижением температуры остается практически постоянной до начала замерзания и зависит только от влагосодержания, а затем увеличивается, так как коэффициент теплопроводности льда в четыре раза больше, чем воды.

Значения коэффициента теплопроводности, рассчитанные по формулам, являются приближенными, поэтому ими пользуются только при отсутствии экспериментальных данных.

При охлаждении и замораживаний продуктов, как и при их нагревании, действуют механизмы переноса продуктом тепловой энергии — температуропроводность. В результате в продукте перемещается температурный фронт. Скорость этого перемещения характеризуется коэффициентом температуропроводности

                                                                  а = λ /сγ,                                                         (39)

где а — коэффициент температуропроводности продукта, м2/с; λ — коэффициент теплопроводности продукта, Вт/(м • К); с — удельная теплоемкость продукта, Дж/(кг • К);     γ — плотность продукта, кг/м3.

При положительных температурах температуропроводность продукта практически неизменна, но с началом льдообразования она резко уменьшается. Это вызвано выделением теплоты кристаллизации. При дальнейшем понижении температуры вследствие роста теплопроводности и уменьшения теплоемкости температуропроводность увеличивается и достигает постоянного значения, когда вода полностью переходит в лед.

Энтальпия — однозначная функция состояния термодинамической системы, часто называемая тепловой функцией или теплосодержанием, измеряется в Дж/кг. Данными об изменении энтальпии продовольственных продуктов в холодильной технологии пользуются обычно для определения отведенной или подведенной теплоты при холодильной обработке продуктов. Энтальпию отсчитывают при какой-либо начальной температуре (обычно -20 °С), при которой ее значение принимается за 0.

Криоскопической температурой называют температуру начала замерзания жидкой фазы продуктов. Тканевый сок продовольственных продуктов представляет собой диссоциированный коллоидный раствор сложного состава, которому соответствует криоскопическая температура -0,5...-5°С.

Плотность — отношение массы продукта к его объему. При замораживании плотность продукта уменьшается (на 5 — 8 %), поскольку вода в тканях, превратившись в лед, увеличивается в объеме при неизменной массе. Плотность большинства скоропортящихся продуктов составляет около 1000 кг/м3.

Равновесное давление пара над поверхностью продукта Рп из-за содержания во влаге продуктов растворенных веществ (сахара, соли и др.) несколько ниже давления насыщенного пара Рн при той же температуре даже при полном насыщении.

Отношение давления пара воды, содержащейся в продукте, к давлению пара чистой воды (или льда) при той же температуре называется относительным понижением давления водяного пара:

                                                                 aW =PП / PH,                                                     (40)

где aWкоэффициент термодинамической активности воды, называемый иногда величиной водной активности.

Эта величина, выраженная в процентах (aW = 100%), определяет равновесную относительную влажность, т.е. относительную влажность воздуха, при которой продукт не теряет и не получает влаги. Величина равновесной относительной влажности зависит от природы продукта и является функцией его температуры, т.е. гигротермической характеристикой продукта.

11.2. Изменение теплофизических параметров пищевых

продуктов и температурные графики

Вымораживание воды в биологических системах при понижении их температуры ниже криоскопической существенно изменяет теплофизические свойства продуктов. Основной причиной изменения теплофизических свойств продуктов при замораживании является превращение воды в лед, так как свойства сухих веществ практически постоянны.

Полная удельная теплоемкость продуктов при замораживании включает скрытую теплоту фазового превращения (льдообразования) воды. Ее значение максимально при начальной криоскопической температуре продукта и уменьшается с понижением температуры.

В тепловых расчетах процесса замораживания пользуются условной теплоемкостью замороженных продуктов, в которую не включают скрытую теплоту льдообразования.

Условная удельная теплоемкость, Дж/(кг • К)

                                         cм = сс (1 - W) + сЛ + cB W (1- ω),                                    (41)

где cc — удельная теплоемкость сухих веществ, Дж/(кг • К); ДЛЯ продуктов животного происхождения она составляет 1,34—1,68 кДж/(кг • К), растительных — не более 0,9        кДж/(кг · К); сл — удельная теплоемкость льда — 2,12 кДж/(кг • К); св — удельная теплоемкость воды — 4,24 кДж/(кг • К); Wмассовая доля воды в продуктах; ω — относительное количество вымороженной воды (определяется при температуре вычисляемой удельной теплоемкости).

Преобразовав выражение и подставив в него значения сл и св, получаем

                                                           см = с0 - 2,12 ,                                                 (42)

где с0 — удельная теплоемкость незамороженного продукта (при начальной температуре), кДж/(кг • К).

Теплоту льдообразования для единицы массы продукта при изменении температуры на один градус находят по формуле

                                                          qω = (ω2ω1) W rл,                                                (43)

где (ω2ω1) - разность относительных количеств вымороженной воды при изменении температуры на один градус; Wмассовая доля воды в продуктах;  rл — удельная скрытая теплота льдообразования, кДж/(кг • К); rл = 335 кДж/(кг · К) при 0°С.

Удельную теплоту льдообразования при различных температурах приближенно вычисляют по формуле, кДж/(кг · К),

                                                             rл = 335 + 2,12 t,                                                 (44)

где tтемпература замороженного продукта, °С, взятая по абсолютной величине.

Полная удельная теплоемкость замороженного продукта составит

                                                                 сω = см + qω,                                                    (45)

где см — условная удельная теплоемкость замороженного продукта, кДж/(кг · К); qω — теплота льдообразования единицы массы продукта при изменении температуры на один градус, кДж/(кг · К).

Разница между значениями сω и см максимальна при начальной криоскопической температуре, когда см = с0, a qω имеет наибольшее числовое значение. После окончания вымерзания воды qω и сω равны см.

Для вычисления полной удельной теплоемкости некоторых продуктов при температурах ниже криоскопической пользуются приближенной эмпирической формулой

                                                                  сω = n - m/t,                                                     (46)

где п и т — постоянные теплоемкости продуктов, их значения приведены в табл. 2; tтемпература, при которой определяется полная теплоемкость мороженого продукта, °С.

Таблица 2 

Значения постоянных п и т теплоемкости продуктов

Продукт

п

т

Говядина

0,670

39,40

Свинина:

   при W=52 %

0,545

29,20

   при W=77 %

2,810

11,53

   среднее значение

1,885

17,35

Пикша, треска

0,755

37,50

Для расчета коэффициента теплопроводности некоторых продуктов при замораживании можно воспользоваться приближенной эмпирической формулой

                                                                λ = n1 + m1/t,                                                     (47)

где n1 и m1 - постоянные теплопроводимости продуктов, их значения приведены в табл. 3.

Таблица 3

Значения постоянных n1 и т2 теплопроводности продуктов

Продукт

n1

m2

Говядина

1,50

1,08

Свинина

3,36

1,55

Пикша, треска

1,23

0,58

Судак

1,19

0,77

Увеличение теплопроводности продукта при понижении температуры практически завершается с окончанием льдообразования.

Плотность продуктов при замораживании уменьшается тем дольше, чем больше воды они содержат и чем ниже температура, которая достигается при замораживании. Это объясняется расширением воды при превращении ее в лед. Учитывая, что изменение плотности при замораживании, как правило, не превышает 5 —8 %, при расчетах ее условно можно считать постоянной.

Температуропроводность продуктов при понижении температуры увеличивается и достигает максимальной величины с завершением льдообразования. Коэффициент температуропроводности рассчитывается по формуле

                                                              ам = λм /(см γм),                                                   (48)

где λмкоэффициент теплопроводности замороженных продуктов; см — удельная расчетная теплоемкость замороженных продуктов, кДж/(кг • К); γм — плотность замороженного продукта, кг/м3.

Для большинства продуктов питания коэффициент температуропроводности можно вычислить по формуле

                                                     ам = а0 + (2,08 • 10-6) ω,                                             (49)

где а0коэффициент температуропроводности продуктов при температуре выше криоскопической, м2/с; ω — относительное количество воды, вымороженной из продуктов при данной температуре.

При повышении содержания воды в продукте числовой коэффициент тоже увеличивается.

Температурные графики замораживания характеризуют изменения температуры в различных точках продукта во времени и различаются в зависимости от размеров и теплофизических свойств замораживаемых продуктов, а также интенсивности теплоотвода (рис. 18).

По внешнему виду и с точки зрения процессов, протекающих в продуктах, каждый такой график можно разделить на три участка.

Первый участок будет соответствовать охлаждению продукта (различных его частей) до криоскопической температуры. Причем крутизна этого участка определяется быстротой отвода теплоты от продукта.

На втором участке снижение температуры замедляется вследствие выделения скрытой теплоты льдообразования и наклонная кривей может переходить в пологую или даже горизонтальную линию. Замедление снижения температуры для большинства продуктов характерно в диапазоне от -1 до -5 0С, который называют критическим, так как именно в этот период в продуктах происходят наиболее существенные изменения в результате вымораживания воды и увеличения концентрации солевых растворов. Одна из основных целей интенсификации процесса замораживания – быстрое прохождение именно этого участка, что достигается применением быстрых и сверхбыстрых способов замораживания (см. рис. 18, б).

Рис. 18. Температурные графики замораживания рыбы:

а — на воздухе при температуре -35 °С и скорости циркуляции воздуха 5 м/с;

б— в растворе хлорида натрия при температуре -20°С

Третий участок графика показывает изменение температуры после перехода основной части воды в твердокристаллическое состояние.

Изменение теплофизических свойств продуктов (увеличение теплопроводности и температуропроводности) стимулирует процесс отвода теплоты от их внутренних слоев, что отражается на графике увеличением наклона кривой.

ГЛАВА 12

ТЕПЛО- И МАССООБМЕННЫЕ ПРОЦЕССЫ

В ХОЛОДИЛЬНОЙ ТЕХНОЛОГИИ

12.1. Тепловой расчет процесса охлаждения

В задачу теплового расчета входит определение продолжительности охлаждения продуктов и количества теплоты, отводимого от них в процессе охлаждения.

Продолжительность охлаждения — основа расчета количества теплоты, отводимой от продуктов в процессе охлаждения, оценки эффективности работы холодильной камеры, оборудования и др. Она зависит от вида и параметров охлаждающей среды, размеров и теплофизических характеристик охлаждаемых продуктов. Наибольшей продолжительностью характеризуются процессы охлаждения продуктов в воздушной среде, наименьшей — в вакууме.

Продолжительность охлаждения продуктов, имеющих правильную геометрическую форму или близкую к ней, определяют, пользуясь номограммами, выражающими графическую зависимость безразмерной температуры от критериев Фурье и Био для середины пластины, оси цилиндра и центра шара.

Безразмерная температура

                                                      Θ = (tt0) / (tHt0),                                                   (50)                                  

где t, tHсоответственно текущая и начальная температуры продукта, °С; t0 — температура охлаждающей среды, 0С;

                                                                  t= f (х, τ).                                                        (51)

Критерий Био, характеризующий эффективность теплообмена поверхности продукта с охлаждающей средой, рассчитывается по уравнению

                                                                  Bi = α l / λ,                                                      (52)

где α — коэффициент теплоотдачи от наружной поверхности продукта охлаждающей среде, Вт/(м2 • К); l— половина толщины продукта, м; λкоэффициент теплопроводности продукта, Вт/(м · К).

Коэффициент теплопроводности продукта определяют по таблице (см. табл. 3), а коэффициент теплоотдачи — из критериальных зависимостей теплообмена при вынужденном и естественном движении охлаждающей среды у поверхности продукта.

Приближенно коэффициент теплоотдачи от продукта к воздуху находят из зависимости Юргенса:

                                                           α = 1,16 (5,3 + 3,6 v),                                            (53)

где v — скорость движения воздуха у поверхности продукта, м/с.

Для приближенных расчетов коэффициент теплоотдачи от продукта к жидкой среде при естественной конвекции можно принять равным 200 — 230 Вт/(м2 · К), при скорости движения жидкости 0,5 м/с - 1000 Вт/(м2 · К).

По полученным значениям безразмерной температуры и критерия Bi из номограммы для пластины, цилиндра или шара (см. приложение 2) определяют точку пересечения соответствующих прямых. Из полученной точки опускают перпендикуляр на ось абсцисс и находят значение критерия Фурье Fo, или безразмерное время

                                                                  Fo = а τ / l2,                                                     (54)

где а — коэффициент температуропроводности продукта, м2/с; τ — продолжительность охлаждения, с; l — половина толщины продукта, м.

Отсюда продолжительность охлаждения

                                                                   τ = Fo l2/a.                                                      (55)

Коэффициент температуропроводности продукта а в формуле находят по таблицам теплофизических характеристик. В приближенных расчетах его можно принять равным 1,25 · 10-7 м2/с.

Количество теплоты, отводимой при охлаждении, можно определить, пользуясь выражением

 

                                                              Q = G co (tH – tK)                                                (56)

Или

                                                               Q = G (iHiK),                                                   (57)

где Gмасса продукта, кг; с0 — удельная теплоемкость продув та, кДж/(кг • К); iн - iк — разность удельных энтальпий продукта при его начальной и конечной температурах, кДж/кг.

При охлаждении продуктов воздухом необходимо учитывать, что часть теплоты отводится вследствие испарения влаги с их поверхности, т.е. конвективный теплообмен сочетается с испарительным. Причем теплота, отводимая вследствие испарения влаги, может составлять до 50 % общего количества теплоты в зависимости от температуры воздуха и свойств охлаждаемых продуктов.

Испарение влаги с поверхности продуктов значительно уменьшается при наличии естественного защитного слоя или упаковки.

При медленном охлаждении продуктов количество теплоты, отводимой от мяса, птицы, рыбы и др., увеличивается за счет биохимических процессов, происходящих в продукте на начальной стадии созревания. В этом случае общая формула количества теплоты, отводимой от продукта, с учетом его внутренних тепловыделений и теплового эфф