Синтез систем автоматического управления

Уточнение структурной схемы системы регулирования выбора и расчета ее элементов и параметров. Экспериментальное исследование системы или отдельных ее частей в лабораторных условиях и внесение соответствующих исправлений в ее схему и конструкцию. Проектирование и производство системы регулирования. Наладка системы в реальных условиях работы опытная эксплуатация.

2015-01-08

1.32 MB

209 чел.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция №6    Синтез систем автоматического управления

СИНТЕЗ  САУ – выбор структуры и параметров САУ, начальных условий и входных воздействий в соответствии с требуемыми показателями качества и условиями функционирования.

Проектирование САУ предполагает выполнение следующих этапов:

  1.  Исследование объекта регулирования: составление математической модели, определение параметров, характеристик и условий работы объекта.
  2.  Формулирование требований к САР.
  3.  Выбор принципа управления; определение функциональной структуры (технический синтез).
  4.  Выбор элементов схемы регулирования с учетом статических, динамических, энергетических, эксплуатационных и др. требований и согласование их между собой по статическим и энергетическим характеристикам (процедура не формализована -  инженерное творчество).
  5.  Определение алгоритмической структуры (теоретический синтез) производится с помощью математических методов и на основании требований, записанных в чёткой математической форме. Определение законов регулирования и расчет корректирующих устройств, обеспечивающих заданные требования.
  6.  Уточнение структурной схемы системы регулирования, выбора и расчета ее элементов и параметров.
  7.  Экспериментальное исследование системы  (или отдельных ее частей) в лабораторных условиях и внесение соответствующих исправлений в ее схему и конструкцию.
  8.  Проектирование и производство системы регулирования.
  9.  Наладка системы в реальных условиях работы (опытная эксплуатация).

Проектирование САУ начинают с выбора объекта управления и основных функциональных элементов (усилителей, исполнительных устройств и др.), то есть разрабатывают силовую часть системы.

Заданные статические и динамические характеристики системы обеспечиваются соответствующим выбором структуры и параметров силовой части, специальных корректирующих устройств и всей САУ в целом.

 Назначение корректирующих устройств: обеспечить требуемую точность работы системы и получить приемлемый характер переходного процесса.

Корректирующие звенья вводятся в систему различными способами: последовательно, местная ООС, прямое параллельное включение, внешние (вне контура регулирования) компенсирующие устройства, охват всей САУ стабилизирующей ООС, неединичная главная обратная связь.

Типы электрических корректирующих устройств постоянного тока: активные и пассивные четырехполюсники постоянного тока, дифференцирующие трансформаторы, тахогенераторы постоянного тока, тахометрические мосты и др.

По назначению корректирующие устройства классифицируются:

  1.  СТАБИЛИЗИРУЮЩИЕ – обеспечивать устойчивость САУ и улучшать их статические и динамические характеристики;
  2.  КОМПЕНСИРУЮЩИЕ – уменьшать статические и динамические ошибки при построении САУ по комбинированному принципу;
  3.  ФИЛЬТРУЮЩИЕ – повышение помехозащищенности систем, например фильтрация высших гармоник при демодуляции сигнала прямого канала;
  4.  СПЕЦИАЛИЗИРОВАННЫЕ – для придания системе особых свойств, позволяющих улучшить показатели качества системы.

САУ могут быть построены по следующим структурным схемам:

  1.  С последовательной корректирующей цепью.

Усилитель У должен иметь большое входное сопротивление, чтобы не шунтировать выход корректирующей цепи.

Применяется в случае медленно изменяющихся входных воздействиях, так как при больших рассогласованиях происходит насыщение в реальных нелинейных элементах, частота среза уходит влево и система медленно выходит из состояния насыщения.

Рис.1.

Последовательная коррекция часто используется в системах стабилизации либо для коррекции  контура с корректирующей обратной связью.

- уменьшается.

  

  1.  Со встречно–параллельной корректирующей цепью.

 

Рис.2.

поступает на вход  как разность и глубокого насыщения не наступает.

  1.  С последовательно–параллельной корректирующей цепью.

Рис.3.

  1.  С комбинированными корректирующими цепями.

    Принцип построения многоконтурной САУ с каскадным включением регуляторов называют принципом подчинённого регулирования. Синтез САУ подчинённого регулирования с двумя и более контурами проводится путём последовательной оптимизации контуров, начиная с внутреннего.  

Расчёт систем делится на 2 этапа: статический и динамический.

           Статический расчёт заключается в выборе основных звеньев системы, входящих в её главную цепь, составление структурной схемы последней и определение  параметров основных элементов системы (коэффициентов усиления, обеспечивающих требуемую точность, постоянных времени всех элементов, передаточных чисел, передаточных функций отдельных звеньев, мощности  двигателя). Кроме того, сюда входит расчёт и проектирование  магнитных и полупроводниковых усилителей и выбор транзисторных или тиристорных преобразователей, двигателей, чувствительных элементов и других вспомогательных устройств  систем, а также расчёт  точности в установившемся режиме работы и чувствительности системы.

           Динамический расчёт включает большой комплекс вопросов, связанных с устойчивостью и качеством переходного процесса (быстродействием, характеристикой отработки и динамической точностью работы системы). В процессе расчёта выбираются корректирующие цепи, места их включения и определяются параметры последних. Проводится также расчёт кривой переходного процесса или моделирование системы с целью уточнения полученных качественных показателей и учёта некоторых нелинейностей.

      Платформы, на которых строятся стабилизирующие алгоритмы:

  1.  Классическая (дифференциальные уравнения - временные и частотные методы);
  2.  Нечеткая логика;
  3.  Нейронные сети;
  4.  Генетические и муравьиные алгоритмы.

 

Методы синтеза регуляторов:

  1.  Классическая схема;
  2.  ПИД – регуляторы;
  3.  Метод размещения полюсов;
  4.  Метод    ЛЧХ;
  5.  Комбинированное управление;
  6.  Множество стабилизирующих регуляторов.

                                        Классический синтез регуляторов

     Классическая структурная схема управления объектом приведена на рис. 1. Обычно регулятор включают перед объектом. 

                 

                            Рис. 1. Классическая структурная схема управления объектом

   Задача системы управления состоит в том, чтобы подавить действие внешнего возмущения  и обеспечить  качественные переходные процессы. Эти задачи часто противоречивы. Фактически нам нужно стабилизировать  систему так, чтобы она имела требуемые передаточные функции по задающему воздействию  и по каналу возмущения :

                  ,      .

    

     Для этого мы можем использовать только один регулятор , поэтому такую систему называют системой с одной степенью свободы.

     Эти две передаточные функции связаны равенством

                                                     .

      Поэтому , изменяя одну из передаточных функций, автоматически меняем и вторую. Таким образом, их невозможно сформировать независимо и решение всегда будет некоторым компромиссом.

Посмотрим, можно ли в такой системе обеспечить нулевую ошибку, то есть, абсолютно точное отслеживание входного сигнала. Передаточная функция по ошибке  равна

                                 

      Для того, чтобы ошибка всегда была нулевой, требуется, чтобы эта передаточная функция была равна нулю. Поскольку ее числитель - не нуль, сразу получаем, что знаменатель должен обращаться в бесконечность. Мы можем влиять только на регулятор  , поэтому получаем . Таким  образом, для уменьшения ошибки нужно

увеличивать коэффициент усиления регулятора. 

     Однако нельзя увеличивать усиление до бесконечности. Во-первых, все реальные устройства имеют предельно допустимые значения входных и выходных сигналов. Во-вторых, при большом усилении контура ухудшается качество переходных процессов, усиливается влияние возмущений и шумов, система может потерять устойчивость. Поэтому в схеме с одной степенью свободы обеспечить нулевую ошибку слежения невозможно.

    Посмотрим на задачу с точки зрения частотных характеристик. С одной стороны, для качественного отслеживания задающего сигнала  желательно, чтобы частотная характеристика  была примерно равна 1 (в этом случае ). С другой стороны, с точки зрения робастной устойчивости нужно обеспечить  на высоких частотах, где ошибка моделирования велика. Кроме того, передаточная функция по возмущению должна быть такой, чтобы эти возмущения подавлять, в идеале мы должны обеспечить .

    Выбирая компромиссное решение, обычно поступают следующим образом:

●   на низких частотах добиваются выполнения условия , что обеспечивает хорошее слежение за низкочастотными сигналами; при этом , то есть, низкочастотные возмущения подавляются;

●      на высоких частотах стремятся сделать , чтобы обеспечить робастную устойчивость и подавление шума измерений; при этом то есть система фактически работает как разомкнутая, регулятор не реагирует на высокочастотные помехи.

     Расчет  линейных непрерывных САУ по заданной точности

                        в установившемся режиме работы

Одно из основных требований, которым должна удовлетворять САУ, заключается в обеспечении необходимой точности воспроизведения задающего (управляющего) сигнала в установившемся режиме работы.

     Порядок астатизма и передаточный коэффициент системы находят исходя из требований к точности в установившемся режиме. Если передаточный коэффициент системы, определённый по требуемой величине статизма и добротности  (в случае астатической САУ), оказывается настолько большим, что существенно затрудняет даже просто стабилизацию системы, целесообразно повысить порядок астатизма и этим свести до нуля заданную установившуюся ошибку вне зависимости от значения передаточного коэффициента системы. В результате становится возможным величину этого коэффициента выбирать, исходя только из соображений устойчивости и качества переходных процессов.

Пусть структурная схема САР приведена к виду

Тогда в квазиустановившемся режиме работы САР рассогласование  представимо в виде сходящегося ряда

,

где  выполняют роль весовых констант.

Очевидно, что такой процесс может иметь место только в том случае, если –медленно меняющаяся и достаточно плавная функция.

Если представить передаточную функцию разомкнутой системы в виде

,

то при r=0  

при r=1   

при r=2    

при r=3    

Низкочастотная часть логарифмических амплитудных частотных характеристик обусловливает точность работы системы при отработке медленно меняющихся сигналов управления в установившемся состоянии и определяется коэффициентами ошибок. Коэффициенты ошибок больше  не оказывают существенного влияния на точность САУ, и их можно не учитывать при практических расчётах.

1. Расчет установившегося режима работы САР по заданным коэффициентам рассогласования (ошибки)

Точность работы системы в установившемся режиме определяется величиной передаточного коэффициента разомкнутой системы , который определяется в зависимости от формы задания требований к точности системы.

Расчет ведется следующим образом.

  1.  СТАТИЧЕСКИЕ САР. Здесь задается величина коэффициента позиционной ошибки , по которому определяется : .

L,

дБ

                                 20lgkpc

                                                                    ω, с-1

  1.  АСТАТИЧЕСКИЕ СИСТЕМЫ 1-го порядка.

В этом случае задан коэффициент , по которому определяется

Если заданы коэффициенты  и , то , который определяет положение низкочастотной асимптоты ЛАЧХ разомкнутой системы с наклоном -20 дБ/дек, а вторая асимптота имеет наклон -40 дБ/дек при сопрягающей частоте  (рис.1).

Рис.1.

  1.  АСТАТИЧЕСКИЕ СИСТЕМЫ 2-го порядка.

По заданному коэффициенту  определим kpc:

L,

дБ

                 -40

            

                                                             

                                                                   ω, с-1

2. Расчет установившегося режима работы САР по заданной максимальной величине рассогласования (ошибки) системы

На основании допустимого значения установившейся ошибки и вида управляющего воздействия выбираются параметры низкочастотной части ЛАЧХ системы.

  1.   Пусть заданы допустимая максимальная ошибка  при гармоническом воздействии с амплитудой  и частотой  и порядок  астатизма системы.

Тогда низкочастотная асимптота ЛАЧХ системы должна проходить не ниже контрольной точки  с координатами:

     (1)

и иметь наклон -20r дБ/дек. Зависимость (1) справедлива при .

  1.  Пусть заданы допустимая максимальная ошибка  при максимальной скорости  и максимальное ускорение  входного воздействия и порядок астатизма r системы.

Часто удобно пользоваться методом эквивалентного синусоидального воздействия, предложенного Я.Е. Гукайло.

В этом случае определяется режим, при  котором амплитуды скорости и ускорения равны максимальным заданным значениям. Пусть входное воздействие изменяется в соответствии с заданным законом

.       (2)

Приравнивая амплитудные значения скорости и ускорения, полученные дифференцированием выражения (2), заданным значениям  и , получим

откуда , . По этим величинам можно построить контрольную

точку В с координатами  и

при единичной отрицательной обратной связи,

при неединичной обратной связи.

Если скорость сигнала на входе максимальна, а ускорение убывает, то контрольная точка будет двигаться по прямой с наклоном -20 дБ/дек в диапазоне частот . Если же ускорение равно максимальному значению, а скорость убывает, то контрольная точка движется по прямой с наклоном -40дБ/дек в диапазоне частот .

Область, расположенная ниже контрольной точки В и двух прямых с наклонами       -20дБ/дек и -40дБ/дек, представляет собой запретную область для ЛАЧХ следящей системы. Так как точная ЛАЧХ проходит ниже точки пересечения двух асимптот на 3 дБ, то желаемая характеристика при  должна быть поднята вверх на эту величину, т.е.

.

При этом требуемое значение добротности по скорости , а частота в точке пересечения второй асимптоты с осью частот (рис.2)

.

В том случае, когда управляющее воздействие характеризуется только максимальной скоростью, добротность системы по скорости при заданном значении ошибки:

.

Если задано только максимальное ускорение сигнала и величина ошибки, то добротность по ускорению:

.

Рис.2.

  1.   Пусть задана максимальная статическая ошибка по каналу управления  (входное воздействие ступенчатое , система статическая по каналу управления).

Рис.3.

 Тогда величина  определяется из выражения . Статическую точность автоматической системы можно определить из уравнения:

,

где  – статическая точность замкнутой системы,

– отклонение регулируемой величины в разомкнутой системе,

– передаточный коэффициент разомкнутой системы, требуемый для обеспечения заданной точности.

  1.  Пусть задана максимальная допустимая статическая ошибка по каналу возмущения  (возмущающее воздействие ступенчатое , система статическая по каналу возмущения, рис.3).

Тогда величина  определяется из выражения:

,

где  – передаточный коэффициент разомкнутой системы по каналу возмущения,

где  – ошибка системы без регулятора.

В статических системах управления установившаяся ошибка, вызванная постоянным возмущающим воздействием, уменьшается по сравнению с разомкнутой системой в 1+. При этом в 1+ раз уменьшается также и передаточный коэффициент замкнутой системы.

  1.  Пусть задана допустимая скоростная ошибка от управляющего воздействия  (входное воздействие изменяется с постоянной скоростью , система астатическая первого порядка).

Следящие системы проектируют обычно астатическими первого порядка. Они работают при переменном управляющем воздействии. Для таких систем в установившемся режиме наиболее характерным является изменение входного воздействия по линейному закону.

Тогда добротность системы по скорости определяется из выражения:

      

               .

Поскольку установившаяся ошибка определяется низкочастотной частью ЛАЧХ, то по вычисленному значению передаточного коэффициента может быть построена низкочастотная асимптота желаемой ЛАЧХ.

3. Расчет установившегося режима работы САР по заданной максимальной допустимой ошибке системы с неединичной обратной связью

Пусть априорная информация о входном сигнале сведена к минимуму:

  1.  Максимальное по модулю значение первой производной входного воздействия (максимальная скорость слежения) – ;
  2.  Максимальное по модулю значение второй производной входного воздействия (максимальное ускорение слежения) – ;
  3.  Входное воздействие может быть детерминированным или случайным сигналом с любой спектральной плотностью.

Требуется ограничить максимально допустимую ошибку системы управления при воспроизведении полезного сигнала в установившемся режиме работы величиной .

Требование к точности воспроизведения наиболее просто формулируется для гармонического входного воздействия эквивалентного реальному входному сигналу:

в предположении, что амплитуда и частота заданы, а начальная фаза имеет произвольное значение.

Установим связь между допустимой ошибкой воспроизведения входного воздействия  и параметрами системы и входного сигнала.

Пусть структурная схема непрерывной САУ сведена к виду (рис.4).

Рис.4.

Ошибка на выходе системы во временной области определяется выражением:

,

где – эталонная (безошибочная) выходная функция.

Можно показать, что вследствие ограничений на скорости и ускорения выходная функция отличается от ступенчатой.

Отобразим последнее выражение в пространство преобразований Лапласа:

.

Отобразим  в пространство преобразований Фурье:

.

 В области низких частот (, –постоянные времени цепи обратной связи) , тогда

, ,

максимальная амплитуда ошибки определяется по выражению:

.

В реальных системах на низких частотах обычно , ибо следует выполнить требование ; математическое выражение для определения преобразуется на контрольной частоте () к виду

и для того, чтобы выходная функция воспроизводилась с максимальной ошибкой не более заданной , ЛАЧХ проектируемой системы не должна проходить ниже контрольной точки  с координатами  и

.


4. Расчет установившегося режима работы статической САУ методом предельных переходов

 Утверждение

Пусть задана обобщенная структурная схема статической САР:

где , , , , здесь полиномы числителей и знаменателей не содержат множителя p (свободные члены их равны единице),

– передаточный коэффициент регулятора,

– передаточный коэффициент объекта по каналу управления,

– передаточный коэффициент обратной связи,

– передаточный коэффициент объекта по каналу возмущения,

причем в первом приближении статические и динамические передаточные коэффициенты звеньев приняты равными, номинальному входному воздействию  соответствует номинальная величина выходной функции  по каналу управления, и пусть заданы величина ступенчатого возмущающего воздействия  и  – допустимая статическая ошибка по каналу возмущения в % от номинального значения выходной функции .

Тогда передаточные коэффициенты системы по каналам управления и возмущения в установившемся режиме равны статическим передаточным коэффициентам замкнутой системы и определяются по формулам:

     (1)

Уравнения статики по каналам управления и возмущения имеют вид

    (2)

Передаточные коэффициенты регулятора и цепи обратной связи определяются по выражениям:

   (3)

 

Способы повышения статической точности САУ

  1.  Увеличение передаточного коэффициента разомкнутой системы в статических системах.

, где  , .

Однако условия устойчивости при увеличении  ухудшаются, то есть увеличиваются погрешности в динамике.

  1.  Введение в регулятор интегральной составляющей.

2.1. Применение И-регулятора: .

В этом случае система становится астатической по каналам управления и возмущения, а статическая ошибка становится равной нулю. ЛАЧХ системы  пойдет значительно круче исходной, а фазовый сдвиг увеличивается на – 90 градусов. Система может оказаться неустойчивой.

2.2. Установка ПИ-регулятора : .

Здесь статическая ошибка равна нулю, а условия устойчивости лучше, чем у системы с И-регулятором.

2.3. Использование ПИД-регулятора : .

Статическая ошибка системы равна нулю, а условия устойчивости лучше, чем в системе с ПИ-регулятором.

  1.  Введение в систему неединичной обратной связи, если требуется точное воспроизведение информационного уровня входного сигнала.

Полагаем, что  и  - статические звенья. , требуется подобрать такое ,

  чтобы ; .

  1.  Масштабирование входного

воздействия.

Здесь .

Выходная функция будет равна информационному уровню входного воздействия, если , отсюда , где .

  1.  Применение принципа компенсации по каналам управления и возмущения.

Расчет компенсирующих устройств изложен в разделе «Расчет систем комбинированного управления».

Расчёт динамики САУ

Синтез САУ по ЛЧХ

В настоящее время разработано большое число методов синтеза корректирующих устройств, которые подразделяются на:

  •  аналитические методы синтеза, в которых используются аналитические выражения, связывающие показатели качества системы с параметрами корректирующих устройств;
  •  графо-аналитические.

Самый удобный из графо-аналитических методов синтеза – классический универсальный метод логарифмических частотных характеристик.

Сущность метода заключается в следующем. Сначала строят асимптотическую ЛАЧХ  исходной системы, затем строят желаемую ЛАЧХ  разомкнутой системы; ЛАЧХ корректирующего устройства  должна так изменить форму ЛАЧХ исходной системы, чтобы ЛАЧХ скорректированной системы  .

Наиболее сложным и ответственным этапом при синтезе является построение желаемой ЛАЧХ. При построении  предполагают, что синтезируемая система имеет единичную отрицательную обратную связь и представляет собой минимально-фазовую систему. Количественная связь между показателями качества переходной функции минимально-фазовых систем с единичными ООС и ЛАЧХ разомкнутой системы устанавливается на основании номограмм Честната-Майера, В.В.Солодовникова, А.В.Фатеева, В.А.Бесекерского.

Желаемую ЛАЧХ условно разделяют на три части: низкочастотную, среднечастотную и высокочастотную. Низкочастотная часть определяется статической точностью системы – точность работы САУ в установившемся режиме. В статической системе низкочастотная асимптота параллельна оси частот, в астатических системах наклон низкочастотной асимптоты составляет –20 * дБ/дек, где - порядок астатизма (=1, 2, 3,…). Среднечастотная часть является наиболее важной, так как она в основном определяет динамику процессов в системе. Основные параметры среднечастотной асимптоты – это её наклон и частота среза . Чем больше наклон среднечастотной асимптоты, тем труднее обеспечить хорошие динамические свойства системы. Поэтому целесообразен наклон –20 дБ/дек и крайне редко он превышает –40 дБ/дек. Частота среза  определяет быстродействие системы. Чем больше , тем выше быстродействие (тем меньше ). Высокочастотная часть желаемой ЛАЧХ незначительно влияет на динамические свойства системы. Вообще говоря, лучше иметь возможно больший наклон её асимптоты, что уменьшает требуемую мощность исполнительного органа и влияние высокочастотных помех.

Желаемую ЛАЧХ строят на основе требований к системе: требования к статическим свойствам задают в виде порядка астатизма и передаточного коэффициента  разомкнутой системы; динамические свойства чаще всего задаются максимально допустимым значением перерегулирования  и временем регулирования ; иногда задают ограничение в виде максимально допустимого ускорения  регулируемой величины при начальном рассогласовании .

Методы построения желаемой ЛАЧХ: построение  по В.В.Солодовникову, использование типовых ЛАЧХ и номограмм для них, построение  по Е.А.Санковскому – Г.Г.Сигалову, упрощенное построение , построение   по В.А.Бесекерскому, по методу А.В.Фатеева и др. методы.

Достоинства частотных методов:

●  Частотные характеристики, отражающие математическую модель объекта, могут быть сравнительно просто получены экспериментальным путём;

●  Расчёты по частотным характеристикам сводятся в простые и наглядные графо-аналитические построения;

●  Частотные методы сочетают простоту и наглядность в решении задач независимо от порядка системы, наличия трансцендентных или иррациональных звеньев передаточной функции.

Синтез желаемой ЛАЧХ

Теоретическими и экспериментальными исследованиями установлено, что ЛАЧХ разомкнутой системы регулирования, устойчивой в замкнутом состоянии, почти всегда пересекает ось частот участком, имеющим наклон –20 дБ/дек. Пересечение оси частот участком ЛАЧХ с наклоном –40 дБ/дек или –60 дБ/дек возможно, но используется редко, ибо такая система устойчива при очень низком передаточном коэффициенте.

Наиболее рациональная форма ЛАЧХ разомкнутой системы, устойчивой в замкнутом состоянии, имеет наклоны:

  •  низкочастотная асимптота 0, -20, -40 дБ/дек (определяется порядком астатизма системы);
  •  асимптота, сопрягающая низкочастотную со среднечастотной асимптотами, может иметь наклоны –20, -40, -60 дБ/дек;
  •  среднечастотная асимптота –20 дБ/дек;
  •  асимптота, сопрягающая среднечастотную с высокочастотным участком ЛАЧХ, как правило, имеет наклон -40 дБ/дек;
  •  высокочастотный участок ЛАЧХ строят параллельно асимптотам высокочастотного участка ЛАЧХ исходной разомкнутой системы.

При построении желаемых ЛЧХ исходят из следующих требований:

  1.  Скорректированная система должна удовлетворять заданным показателям качества (допустимая ошибка в установившемся режиме, требуемый запас устойчивости, быстродействие, перерегулирование и другие показатели качества переходных процессов).
  2.  Форма желаемых ЛЧХ должна по возможности мало отличаться от ЛЧХ нескорректированной системы для упрощения стабилизирующего устройства.
  3.  Следует стремиться к тому, чтобы  на высоких частотах не проходила выше ЛАЧХ нескорректированной системы более чем на 20-25 дБ.
  4.  Низкочастотная часть желаемой ЛАЧХ должна совпадать с ЛАЧХ нескорректированной системы, так как передаточный коэффициент разомкнутой нескорректированной  в динамике системы выбирается с учетом требуемой точности в установившемся режиме.

Построение желаемых ЛЧХ можно считать законченным, если удовлетворены все требования к качеству системы. В противном случае следует вернуться к расчету установившегося режима работы и изменить параметры элементов основной цепи (выбрать двигатель другой мощности или менее инерционный, использовать усилитель с меньшей постоянной времени, включить жесткую отрицательную обратную связь, охватывающую наиболее инерционные элементы системы, и т.д.).

Алгоритм построения желаемых ЛЧХ

  1.  Выбор частоты среза Lж(w).

Если заданы перерегулирование  и время затухания переходного процесса , то используются номограммы В.В.Солодовникова или А.В.Фатеева; если задан показатель колебательности М, то расчет ведут по методу В.А.Бесекерского.

В основу построения номограмм качества В.В.Солодовниковым положена типовая вещественная частотная характеристика замкнутой САУ (рис. 2). Для статических систем (=0) , для астатических систем (=1, 2,…) .

Этот метод предполагает, что соблюдается соотношение .

В качестве исходных приняты динамические показатели качества  и , которые связаны с параметрами вещественной частотной характеристики замкнутой САУ диаграммой качества В.В. Солодовникова (рис. 3). По заданному  с помощью кривой  (рис.3) определяется соответствующее значение . Затем по  и кривой  определяется значение , которое приравнивается заданному , получаем  , где  – значение частоты среза, при котором время регулирования не превысит заданного значения .

С другой стороны  ограничивается допустимым ускорением регулируемой координаты . Рекомендовано , где  – начальное рассогласование.

Время регулирования  можно приближенно определить, используя эмпирическую формулу , где коэффициент числителя принимается равным 2 при , 3 при , 4 при .

Всегда желательно проектирование системы с максимально возможным быстродействием.

Как правило,  не превышает  более, чем на ½ декады. Это связано с усложнением корректирующих устройств, необходимостью введения в систему дифференцирующих звеньев, что уменьшает надежность и помехоустойчивость, а также в силу ограничения по максимально допустимому ускорению регулируемой координаты.

Частоту среза  можно повышать лишь увеличением . Статическая точность при этом возрастает, но ухудшаются условия устойчивости.

Принятие решения по выбору  должно иметь достаточное обоснование.

  1.  Строим среднечастотную асимптоту.

Ее проводим через точку на оси абсцисс  с наклоном –20 дБ/дек.

  1.  Среднечастотную асимптоту сопрягаем с низкочастотной асимптотой так, чтобы в интервале частот, в котором , иметь избыток фазы . Избыток фазы и избыток модуля  определяем по номограмме (рис. 4). Сопрягающая асимптота имеет наклон –20, -40 или –60 дБ/дек при =0 ( - порядок астатизма системы); -40, -60 дБ/дек при =1 и -60 дБ/дек при =2.

Если избыток фазы  окажется меньше , то сопрягающую асимптоту следует сместить влево или уменьшить ее наклон. Если избыток фазы больше допустимого, то сопрягающую асимптоту смещают вправо или увеличивают ее наклон.

Первоначальная сопрягающая частота определяется из выражения .

Рекомендуемая разность  должна составлять несколько градусов. Однако часто (в статических системах)  значительно превосходит , и уменьшение   затруднительно. В этом случае принимается .

  1.  Среднечастотную асимптоту сопрягаем с высокочастотной частью таким образом, чтобы в интервале частот, где , избыток фазы был . Сопрягающую частоту определяем по соотношению .

Если на сопрягающей частоте <, то сопрягающую асимптоту смещают вправо или уменьшают ее наклон.

Если >, то сопрягающую асимптоту смещают влево или увеличивают ее наклон. Рекомендуемая разность  должна составлять несколько градусов. Правая сопрягающая частота сопрягающей асимптоты .

Как правило, наклон этой асимптоты составляет -40 дБ/дек, а допустимая разность . Проверка производится на частоте, при которой .

  1.  Высокочастотная часть  проектируется параллельно  или совмещается с ней.

Эта часть характеристики влияет на плавность работы системы.

Итак, на первом этапе построения  частоты, на которых сопрягается среднечастотная асимптота с сопрягающими асимптотами, находятся из условий . На втором этапе уточняются значения сопрягающих частот с учетом избытков фазы. На третьем этапе корректируются все сопрягающие частоты  по условию их близости к сопрягающей частоте исходной системы, т. е. , если эти частоты незначимо отличаются друг от друга.

Синтез корректирующей цепи последовательного типа

В схеме рис.1 , отсюда могут быть получены параметры корректирующей цепи:

.

Перейдем к логарифмическим частотным характеристикам: ,

       .

На высоких частотах ЛАЧХ регулятора  «по умолчанию» не должна превышать 20 дБ по условию помехозащиты. Фундаментальный принцип структурно-параметрической оптимизации САУ с обратной связью: регулятор должен содержать динамическое звено с передаточной функцией, равной или близкой обратной передаточной функции объекта управления.

Рассмотрим на примере расчет последовательной корректирующей цепи.

Пусть требуется скорректировать статическую систему. Предположим, что  и  нами построены. Полагаем, что система с минимально-фазовыми звеньями, поэтому фазо-частотную характеристику не строим (рис.2).

,

                                      ,

                                      .

Теперь легко воспроизвести параметры корректирующей цепи. Чаще всего используются активные корректирующие устройства и пассивные RC-цепи. Исходя из физических представлений строим цепь, изображенную на рис. 3.

Ослаблению сигнала делителем R1-R2 на высоких частотах соответствует ослабление сигнала * на .

, где ,

.

на высоких частотах не вносит искажений – положительный фактор. Частоту среза имеем возможность сдвинуть влево с помощью корректирующей цепи и обеспечить требуемые устойчивость и качество работы системы.

 

Достоинства последовательных КУ:

  1.  Простота корректирующего устройства (во многих случаях реализуются в виде простых пассивных RC-контуров);
  2.  Простота включения.

Недостатки:

  1.  Эффект последовательной коррекции уменьшается в процессе эксплуатации при изменении параметров (коэффициентов усиления, постоянных времени), поэтому при последовательной коррекции к стабильности параметров элементов предъявляются повышенные требования, что достигается применением более дорогостоящих элементов;
  2.  Дифференцирующие фазоопережающие RC-контуры (алгоритмы в микроконтроллерах) чувствительны к высокочастотным помехам;
  3.  Последовательные интегрирующие RC-контуры содержат более громоздкие конденсаторы (требуется реализация больших постоянных времени), чем контуры в цепи обратной связи.

Применяются обычно в маломощных системах. Это объясняется, с одной стороны, простотой последовательных корректирующих устройств, а с другой стороны, нецелесообразностью применения в этих системах громоздких, соизмеримых с размерами исполнительного двигателя таких параллельных  корректирующих устройств, как тахогенератор.

Следует иметь в виду, что из-за насыщения усилителей не всегда целесообразно осуществлять формирование желаемой ЛАЧХ  в диапазоне низких и средних частот за счет последовательного включения в систему интегрирующих и интегродифференцирующих цепей или каких-нибудь других элементов с аналогичными характеристиками. Поэтому часто для формирования  в диапазоне низких и средних частот применяются обратные связи.

Синтез корректирующих цепей встречно-параллельного типа

При выборе места включения корректирующей цепи следует руководствоваться следующими правилами:

  1.  Охватывать следует те звенья, которые существенно отрицательно влияют на вид желаемой ЛАЧХ.
  2.  Наклон ЛАЧХ звеньев, не охваченных обратной связью, выбирают близким к наклону  в диапазоне средних частот. Выполнение этого условия позволяет иметь простую корректирующую цепь.
  3.  Корректирующая обратная связь должна охватывать как можно больше звеньев с нелинейными характеристиками. В пределе необходимо стремиться к тому, чтобы среди звеньев, не охваченных обратной связью, не было элементов с нелинейными характеристиками. Такое включение обратной связи позволяет значительно уменьшить влияние нелинейности характеристик элементов, охваченных обратной связью, на работу системы.
  4.  Обратная связь должна охватывать звенья с большим передаточным коэффициентом. Только в этом случае действие обратной связи будет эффективным.
  5.  Сигнал на вход обратной связи должен сниматься с элемента, обладающего достаточной мощностью, чтобы включение обратной связи не нагружало его. Сигнал с выхода обратной связи должен, как правило, подаваться на вход элементов системы, имеющих большое входное сопротивление.
  6.  При выборе места включения обратной связи внутри контура с корректирующей обратной связью желательно, чтобы наклон ЛАЧХ  в диапазоне частот  составлял 0 или –20 дБ/дек. Выполнение этого условия позволяет иметь простую корректирующую цепь .

Часто производят охват усилительного тракта системы или охват силовой части системы. Корректирующие обратные связи применяются обычно в мощных системах.

 

Преимущества КООС:

  1.  Уменьшается зависимость показателей качества системы от изменений параметров элементов неизменяемой части системы, поскольку в существенном диапазоне частот передаточная функция участка системы, охваченного обратной связью, определяется обратной величиной передаточной функции встречно-параллельного корректирующего устройства. Поэтому требования к элементам исходной системы менее жесткие, чем при последовательной коррекции.
  2.  Нелинейные характеристики элементов, охваченных обратной связью, линеаризуются, так как передаточные свойства охваченного участка системы определяются параметрами контура в цепи обратной связи.
  3.  Питание встречно-параллельных корректирующих устройств даже в том случае, когда оно требует большой мощности, не вызывает затруднений, так как обратная связь обычно начинается от оконечных звеньев системы с мощным выходом.
  4.  Встречно-параллельные корректирующие устройства работают при меньшем уровне помех, чем последовательные, так как сигнал, поступающий на них, проходит через всю систему, являющуюся фильтром низких частот. Благодаря этому эффективность действия встречно-параллельных корректирующих устройств при наложении помех на сигнал ошибки снижается меньше, чем последовательных корректирующих устройств.
  5.  В отличие от последовательного корректирующего устройства обратная связь позволяет реализовать самую большую постоянную времени желаемой ЛАЧХ  при сравнительно небольших значениях собственных постоянных времени.

Недостатки:

  1.  Встречно-параллельные КУ часто содержат дорогие или громоздкие элементы (например, тахогенераторы, дифференцирующие трансформаторы).
  2.  Суммирование сигнала обратной связи и сигнала ошибки следует реализовать так, чтобы обратная связь не шунтировала вход усилителя.
  3.  Контур, образованный корректирующей обратной связью, может оказаться неустойчивым. Сокращение запасов устойчивости во внутренних контурах ухудшает надежность функционирования системы в целом.

Методы определения :

  1.  Аналитические;
  2.  Графо-аналитические;
  3.  Модельно-экспериментальные.

После расчета встречно-параллельной корректирующей цепи следует проверить устойчивость внутреннего контура. Если разомкнуть главную обратную связь, а внутренний контур неустойчив, то элементы системы могут выйти из строя. Если внутренний контур неустойчив, то его устойчивость обеспечивается последовательной корректирующей цепью.

Приближенный метод построения ЛЧХ корректирующей отрицательной обратной связи

Пусть структурная схема проектируемой

системы приведена к виду, изображенному

на рис.1.

– корректирующая обратная связь;

– передаточная

функция разомкнутой исходной (нескорректированной)

системы.

Для такой структурной схемы передаточная функция скорректированной разомкнутой системы   .

В диапазоне частот, где , уравнение запишется так

, т.е.

- условие выбора;               (1)

- уравнение выбора (в диапазонах низких и высоких частот)     (2)

В диапазоне частот, где ,

- условие выбора;             (3)

получим   ,

т. е. ,

откуда  - уравнение выбора (в диапазоне средних частот).      (4)

Тогда алгоритм построения  следующий:

  1.  Строим .
  2.  Строим .
  3.  Строим  и определяем диапазон частот, где эта характеристика больше нуля (условие выбора (3) ).
  4.  Исходя из конкретной технической реализации системы, определяется , т.е. места входа и выхода корректирующей обратной связи.
  5.  Строим .
  6.  В выделенном диапазоне частот строим логарифмическую частотную характеристику корректирующего звена , вычитая  из  по уравнению выбора (4).
  7.  В низкочастотной области, где  (условие выбора (1) ),  выбираем таким, чтобы выполнялось уравнение выбора (2): .
  8.  В высокочастотной области неравенство (2) обычно выполняется при наклоне асимптоты 0 дБ/дек .
  9.  Наклон и длину сопрягающих асимптот выбирают, исходя из простоты схемной реализации корректирующего устройства.
  10.  По ЛАЧХ  определяем  и проектируем принципиальную схему корректирующего звена.

Пример. Пусть заданы  и . Определены звенья, охватываемые обратной связью . Требуется построить . Построение выполнено на рис.2. Исходная система минимально-фазовая. После построения  следует проверить рассчитываемый контур на устойчивость.

.

Точный метод построения ЛЧХ звена корректирующей обратной связи

Если требуется строго выдерживать заданные показатели качества, то нужно рассчитывать точные значения частотных характеристик корректирующей цепи.

;

                    u                                                                                                       

Исходная структурная схема нескорректированной САУ

Преобразованная структурная схема

                     скорректированной САУ                           Эквивалентная структурная схема

Можно заранее рассчитать частотные характеристики последовательной корректирующей цепи эквивалентной схемы известными методами.

Введем обозначения: ,             (1)

тогда .

Это позволяет воспользоваться номограммами замыкания и найти  и .

Допустим, что  и  известны. Пользуемся номограммой замыкания в обратном порядке:

,  => , .

Тогда из выражения

ЛЧХ встречно-параллельной корректирующей цепи:

,.

Для выбора параметров корректирующей цепи необходимо ЛАЧХ представить в асимптотической форме.

Построение ЛЧХ прямого параллельного корректирующего звена

Структурную схему проектируемой системы преобразуем к виду рис.1.

В этом случае целесообразно рассматривать передаточную функцию .

Частотные характеристики  и  определяются аналогично частотным характеристикам последовательной корректирующей цепи.

В диапазоне частот, где , характеристики

и ,

т.е. корректирующая цепь не оказывает влияния на работу системы, а в диапазоне частот, где , характеристики

и

и поведение системы определяется параметрами прямой параллельной цепи.

В диапазоне частот, где , целесообразно при определении ЛЧХ  и  представить параллельно включенные звенья в виде , где , .

ЛЧХ последовательного корректирующего устройства  и  построим, как и прежде. Используя номограмму замыкания, найдем  и  и, наконец, ,  .

Проектирование корректирующего устройства

 Критерии качества КУ:

  1.  Надежность;
  2.  Низкая стоимость;
  3.  Простота схемной реализации;
  4.  Устойчивость;
  5.  Помехозащищенность;
  6.  Малое энергопотребление;
  7.  Простота производства и эксплуатации.

Ограничения:

  1.  Не рекомендуется установка в одном корректирующем звене конденсаторов или резисторов, номиналы которых отличаются на два-три порядка.
  2.  ЛАЧХ корректирующих звеньев может иметь протяженность по частоте не более 2-3 декад, ослабление по амплитуде не более 20-30 дБ.
  3.  Передаточный коэффициент  пассивного четырехполюсника не следует проектировать менее 0,05-0,1.
  4.  Номиналы резисторов в активных корректирующих звеньях:

а) в цепи обратной связи – не более 1-1,5 МОм и не менее десятков кОм;

б) в цепи прямого канала – от десятков кОм до 1 МОм.

  1.  Номиналы конденсаторов: единицы мкФ – сотни пкФарад.

Виды корректирующих звеньев

  1.  Пассивные четырёхполюсники (R-L-C-цепи).

Если , то влиянием нагрузки на информационные процессы можно пренебречь. .

Выходной сигнал в этих цепях слабее (или равен по уровню) входного.

Пример. Пассивное интегро-дифференцирующее звено.

,

где  .

Преобладание дифференцирующего эффекта обеспечивается в том случае, если величина ослабления k<0.5 или иначе .

Так как сопротивление  является наибольшим, то расчет элементов корректирующей цепи целесообразно начинать с условия , задаваясь .

Обозначим , откуда ;

определим промежуточный параметр =>

,

отсюда  , , k=D.

Входное сопротивление звена на постоянном токе ,

на переменном токе

При согласовании по сопротивлениям достаточным условием на постоянном токе является выполнение соотношения ,

на переменном токе .

  1.  Активные четырёхполюсники.

 

                                            

, если передаточный коэффициент усилителя >>1.

.

Пример. Активное реальное дифференцирующее звено первого порядка.

, причем , , , .

– подбирается при наладке (установка нуля усилителя).

,

 –

на переменном токе, а на постоянном токе входное сопротивление равно .

Выходное сопротивление операционных усилителей составляет десятки Ом и определяется, в основном, величинами резисторов в коллекторных цепях выходных транзисторов.

Схема обеспечивает опережение не во всей области частот, а лишь в определённой полосе около частоты среза системы, расположенной обычно в диапазоне низких и средних частот исходной САУ. Идеальное звено сильно подчеркивает высокие частоты, в области которых располагается спектр помех накладываемых на полезный сигнал, в то время как реальный контур передает их без существенного усиления.

  1.  Дифференцирующий трансформатор.

                                          

Сопротивление цепи первичной обмотки трансформатора .

– коэффициент трансформации трансформатора.

Передаточная функция стабилизирующего трансформатора при

                        и     

имеет вид ,

где ,  ,  – индуктивность трансформатора в режиме холостого хода; .

  1.  Пассивные четырёхполюсники переменного тока.

В цепях переменного тока можно использовать корректирующие цепи постоянного тока.

Схема включения корректирующих цепей следующая:

Согласование элементарных корректирующих звеньев

Производится:

  1.  По нагрузкам активных звеньев (токи нагрузки усилителей не должны превышать предельно допустимых величин);
  2.  По сопротивлениям выход – вход ( на постоянном токе и верхней частоте диапазона работы системы).

Величины нагрузок операционных усилителей задаются в технических условиях их применения и обычно составляют более 1 кОм.

Примечание. Знак << означает меньше как минимум в 10 раз.

Требования к операционным усилителям:

  1.  Коэффициент усиления по напряжению .
  2.  Малый дрейф нуля.
  3.  Большое входное сопротивление (100 кОм – 3МОм).
  4.  Малое выходное сопротивление (десятки Ом).
  5.  Частотный диапазон работы  (полоса пропускания).
  6.  Напряжение источника питания  +5В, но не менее 10В.
  7.  Конструктивное исполнение (число усилителей в одном корпусе).

                                                                Типовые регуляторы

Типы регуляторов:

  1.   – П-регулятор (греч. statos – стоящий; статический регулятор формирует пропорциональный закон регулирования);

При увеличении kп уменьшается установившаяся ошибка, но усиливаются шумы измерения, что приводит к повышению активности исполнительных элементов (работают рывками), механическая часть изнашивается и существенно уменьшается срок службы оборудования.

Недостатки:

●  неизбежное отклонение регулируемой величины от заданного значения, если объект статический;

●  замедленная реакция регулятора на возмущающие воздействия в начале переходного процесса.

  1.   – И-регулятор (интегральный);
  2.   – ПД-регулятор (пропорционально-дифференциальный);
  3.   – ПИ-регулятор (пропорционально-интегральный);
  4.   – ПИД-регулятор (пропорционально-интегрально-дифференциальный);

  1.  Релейный регулятор.

Регулятор типа Д применяется в обратной связи, а ДИ не применяется.

Эти регуляторы во многих случаях могут обеспечить приемлемое управление, легко настраиваются и дешевы при массовом производстве.

ПД-регулятор

Структурная схема:  

форсирующее звено.

– реальная передаточная функция ПД-регулятора.

– закон регулирования.

(1) – без регулятора;

(2) – П-регулятор;

(3) – ПД-регулятор.

Достоинства ПД-регулятора:

  1.  Увеличивается запас устойчивости;
  2.  Существенно улучшается качество

регулирования (уменьшается колебательность

и время переходного

процесса).

Недостатки ПД-регулятора:

                                                                                              

  1.  Низкая точность регулирования (статика работы   

исходной системы не меняется при kп=1);                    

  1.  Помехи на высоких частотах усиливаются и

нарушается работа системы за счет насыщения

усилителей;

  1.  Сложно реализуется на практике.

Реализация ПД-регулятора

Сигналы входного воздействия и обратной связи суммируются просто.

Если изменить знаки входного воздействия и обратной связи, то к выходу регулятора следует подключить инвертор.

Стабилитроны в обратной связи операционного усилителя предназначены для ограничения уровня выходного сигнала заданной величиной.

 Во входных цепях  и  включаются по необходимости. Желательно, чтобы . Если исключить , то усилитель из-за действия помех может войти в режим насыщения. Подбираются  (величина  до 20 кОм).

Передаточная функция регулятора по каналу управления:

.

                                                                 ПИ-регулятор

(греч. isos – ровный, dromos – бег; изодромный регулятор)

                                              

                                

                                                                               

                                                       ;

на низких  частотах преобладает интегрирующий эффект (отсутствует статическая ошибка),а на высоких частотах – эффект от  (качество переходного процесса лучше, чем при И-законе регулирования).

– закон регулирования.          

  1.  – отсутствие регулятора;
  2.  – П-регулятор;
  3.  – ПИ-регулятор.

Достоинства:

  1.  Простота реализации;
  2.  Существенно улучшает точность регулирования в статике:

•  Установившаяся ошибка при постоянном входном воздействии равна нулю;

•  Эта ошибка нечувствительна к изменениям параметров объекта.

Недостатки: повышается астатизм системы на единицу и, как следствие, снижение запасов устойчивости, увеличивается колебательность переходного процесса, увеличивается .

Реализация ПИ-регулятора

 

                                                             ПИД-регулятор

На низких частотах преобладает интегрирующий эффект, а на высоких – дифференцирующий.

.

– закон регулирования.

Статическая система при установке ПИД-регулятора становится астатической (статическая ошибка равна нулю), однако в динамике астатизм снимается за счет действия дифференцирующей составляющей, т. е. качество переходного процесса улучшается.

 Достоинства:

  1.  Высокая статическая точность; 
  2.  Высокое быстродействие;
  3.  Большой запас устойчивости.

Недостатки:

  1.  Применимы для систем, описываемых

дифференциальными уравнениями невысокого

порядка, когда объект имеет один или два полюса

или может быть аппроксимирован моделью второго

порядка.

  1.  Требования к качеству управления средние.

Реализация ПИД-регулятора

где ,  ,  ,  , причем .

По ЛАЧХ операционного усилителя определяем . Тогда передаточная функция реального регулятора имеет вид .

В системах чаще всего применяется ПИД - регулятор.

Рекомендации по выбору типа регулятора:

  1.  Для объектов с запаздыванием, инерционная часть которых близка звену первого порядка, целесообразно применять ПИ – регулятор;
  2.  Для объектов с запаздыванием, инерционная часть которых имеет порядок , наилучшим регулятором является ПИД – регулятор;
  3.  ПИД – регуляторы эффективны с точки зрения уменьшения установившейся ошибки и улучшения вида переходной характеристики, когда объект управления имеет один или два полюса (или может быть аппроксимирован моделью второго порядка);
  4.  Когда процесс регулирования характеризуется высокой динамичностью, как, например, в САУ потока или давления, дифференцирующую составляющую не применяют, чтобы избежать явления самовозбуждения.

                            Расчёт систем комбинированного управления

Комбинированное – такое управление в автоматической системе, когда наряду с замкнутым          контуром регулирования по отклонению используется внешнее компенсирующее устройство по задающим или возмущающим воздействиям.

Принцип инвариантности – принцип компенсации динамической и статической ошибок независимо от формы входного воздействия по каналу управления или компенсации возмущающего воздействия.

     Система автоматического регулирования является инвариантной по отношению к

возмущающему воздействию, если после завершения переходного процесса,

определяемого начальными условиями, регулируемая величина и ошибка системы не

зависят от этого воздействия.

     Система автоматического регулирования является инвариантной по отношению к

задающему воздействию, если после завершения переходного процесса, определяемого

начальными условиями, ошибка системы не зависит от этого воздействия.

  1.  Расчет компенсирующих устройств по каналу возмущения

    Пусть структурная схема исходной системы преобразована к виду, изображенному

на рис.1.

Перенесем на вход системы точку приложения возмущения (рис. 2).

 

Запишем уравнение для выходной координаты: .

Влияние на выходную функцию со стороны возмущения f будет отсутствовать, если выполняется условие абсолютной инвариантности системы к возмущающему воздействию:

- условие полной компенсации возмущения.

Внешние регуляторы используются для получения инвариантности по каналу возмущения с точностью до , так как порядок знаменателя обычно выше порядка числителя.

Пример. Пусть объект и регулятор ведут себя как  апериодические звенья. Наибольшая постоянная времени, как правило, принадлежит объекту.

Тогда

 ,  ,  ,  

,  .

Графики на рис. 3.

 Компенсирующая цепь должна обладать дифференцирующими свойствами, причем активными дифференцирующими свойствами на высоких частотах (так как характеристика отчасти располагается выше оси частот).

 Достижение абсолютной инвариантности невозможно, однако эффект компенсации может быть значительным даже при простой компенсирующей цепи, обеспечивающей реализацию  в ограниченном диапазоне частот ( на рис. 3).

Технически трудно и не всегда возможно измерить возмущение, поэтому при проектировании систем часто используют косвенные методы измерения возмущающих воздействий.

2. Расчет систем с компенсацией ошибки по каналу управления

Для этой системы, структурная схема которой изображена на рис. 4, справедливы следующие соотношения:

;

– передаточная функция по ошибке.

 

Можем добиться условия полной компенсации ошибки, если выбрать компенсирующую цепь с параметрами:

(1)    – условие абсолютной инвариантности системы к ошибке по каналу управления.

Следящие системы реализуются астатическими. Рассмотрим пример для таких систем (рис.5).

В области высоких частот дифференцирование второго порядка в компенсирующей цепи приводит к насыщению усилителей при высоком уровне помех. Поэтому осуществляется приближенная реализация, которая дает ощутимый эффект регулирования.

 

Астатические системы характеризуются добротностью – передаточный коэффициент k определяется при =1 и =k.

Если k=10, то ошибка в 10%, так как

, система низкого качества (рис.6).

Введем компенсирующую цепь с передаточной функцией

. Такой цепью может служить тахогенератор, если

вход механический. Реализация системы с малой добротностью

проста.

Пусть , из условия (1) получим .

Тогда, имея систему с астатизмом 1-го порядка, получим систему с

астатизмом второго порядка (рис.7).

Всегда Y отстает от управляющего сигнала; введя , уменьшаем ошибку. Компенсирующая цепь не влияет на устойчивость.

Как правило, компенсирующее звено должно обладать дифференцирующими свойствами и реализовываться с использованием активных элементов. Точное выполнение условия абсолютной инвариантности невозможно в виду технической нецелесообразности получения производной выше второго порядка (в контур регулирования вводится высокий уровень помех, возрастает сложность компенсирующего устройства) и инерционности реальных технических устройств. Количество апериодических звеньев в компенсирующем устройстве проектируют равным числу элементарных форсирующих звеньев. Постоянные времени апериодических звеньев рассчитывают по условию работы звеньев в существенной области частот, т.е.

,     .

         Принцип построения многоконтурной САУ с каскадным включением регуляторов называют принципом подчинённого регулирования.

          Синтез САУ подчинённого регулирования с двумя и более контурами проводится путём последовательной оптимизации контуров, начиная с внутреннего.


∆θ
,

град

L,

дБ

Wи(p)        

x

ε

-

+

ε

x

WA1(p)

1/Тp

1/Т0

y1



 

Другие похожие работы, которые могут вас заинтересовать.
2007. Динамический режим систем автоматического управления 100.64 KB
  Динамический режим САУ. Уравнение динамики Установившийся режим не является характерным для САУ. Таким образом основным режимом работы САУ считается динамический режим характеризующийся протеканием в ней переходных процессов. Поэтому второй основной задачей при разработке САУ является анализ динамических режимов работы САУ.
12933. СИНТЕЗ ДИСКРЕТНЫХ СИСТЕМ УПРАВЛЕНИЯ 221.91 KB
  Задача синтеза цифровых устройств управления В тех случаях когда замкнутая дискретная система составленная из функционально необходимых элементов является неустойчивой или её показатели качества не удовлетворяют требуемым возникает задача её коррекции или задача синтеза устройства управления. В настоящее время наиболее рациональным путем построения устройств управления является использование управляющих вычислительных машин или специализированных цифровых вычислителей ЦВ–...
2741. СИНТЕЗ СИСТЕМ УПРАВЛЕНИЯ С ОБРАТНОЙ СВЯЗЬЮ 407.23 KB
  Построим переходные и частотные характеристики непрерывной и дискретной модели: Рис. Переходная характеристика непрерывной системы Рис. Переходная характеристика дискретной системы Рис. Частотные характеристики непрерывной системы Рис.
3208. Основы анализа и построения систем автоматического регулирования 458.63 KB
  Для заданного динамического объекта разработать самостоятельно, либо взять из литературы схему системы автоматического регулирования, работающей по принципу отклонения. Разработать вариант комбинированной системы, включающей контуры управления по отклонению и по возмущению.
5910. Системы автоматического управления с ЦВМ 928.83 KB
  В последние два десятилетия значительно повысилась надёжность и снизилась стоимость цифровых компьютеров. В связи с этим они всё шире стали применяться в системах управления в качестве регуляторов. За время, равное периоду квантования, компьютер способен выполнить большое количество вычислений и сформировать выходной сигнал, который затем используется для управления объектом
5106. Основные виды исследования систем управления: маркетинговые, социологические, экономические (их особенности). Основные направления совершенствования систем управления 178.73 KB
  В условиях динамичности современного производства и общественного устройства управление должно находиться в состоянии непрерывного развития, которое сегодня невозможно обеспечить без исследования путей и возможностей этого развития
14277. Введение в анализ, синтез и моделирование систем 582.75 KB
  Строго говоря различают три ветви науки изучающей системы: системологию теорию систем которая изучает теоретические аспекты и использует теоретические методы теория информации теория вероятностей теория игр и др. Организация системы связана с наличием некоторых причинноследственных связей в этой системе. Организация системы может иметь различные формы например биологическую информационную экологическую экономическую социальную временную пространственную и она определяется причинноследственными связями в материи и социуме. У...
5435. Усовершенствование системы автоматического управления процессом сгущения шламов 515.4 KB
  Гранулят «Уралкалия» в основном экспортируется в Бразилию, США и Китай, где он в дальнейшем используется либо для непосредственного внесения в почву, либо смешивается с азотными и фосфорными удобрениями.
20340. АНАЛИЗ И СИНТЕЗ СИСТЕМЫ УПРАВЛЕНИЯ НА ПРЕДПРИЯТИИ 338.39 KB
  Совершенствование системы управления, а также сегодняшняя практика управления в современных условиях указывают на острую проблему потребности в исследовательском подходе как к управлению, предприятием, так и его совершенствования и развития.
1891. Синтез дискретного модального закона управления по методу Л.М. Бойчука 345.04 KB
  По функции W(z) составить описание дискретного объекта в пространстве состояний. Проверить выполнение условий управляемости и наблюдаемости данного объекта.
© "REFLEADER" http://refleader.ru/
Все права на сайт и размещенные работы
защищены законом об авторском праве.