БИОХИМИЯ МЫШЦ И МЫШЕЧНОГО СОКРАЩЕНИЯ

БИОХИМИЯ МЫШЦ И МЫШЕЧНОГО СОКРАЩЕНИЯ. Механизм мышечного сокращения и расслабления. Важнейшей особенностью функционирования мышц является то что в процессе мышечного сокращения происходит непосредственное превращение химической энергии АТФ в механическую энергию сокращения мышц. Биохимически они различаются механизмами энергетического обеспечения мышечного сокращения.

2014-06-18

712.31 KB

290 чел.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция 7. Тема: БИОХИМИЯ МЫШЦ И МЫШЕЧНОГО СОКРАЩЕНИЯ 

Вопросы:

 

1. Общая характеристика мышц. Строение мышечных клеток.

2. Строение миофибрилл.

3. Механизм мышечного сокращения и расслабления.

1. Общая характеристика мышц. Строение мышечных клеток.

 

Учение о мышцах – это важнейший раздел биохимии, имеющий исключительное значение для спортивной биохимии.

Важнейшей особенностью функционирования мышц является то, что в процессе мышечного сокращения происходит непосредственное превращение химической энергии АТФ в механическую энергию сокращения мышц. Это явление не имеет аналогов в технике и присуще только живым организмам.

При изучении скелетных мышц с помощью светового микроскопа в них обнаружили поперечную исчерченность; отсюда их название поперечно-полосатые.

В скелетной мышце выделяют сухожильную головку, которой мышца начинается на кости, мышечное брюшко, состоящее из волокон, и сухожильный хвост, которым мышца заканчивается на другой кости (рис.).

Мышечное волокно — структурная единица мышцы. Известны три типа мышечных волокон: белые быстро сокращающиеся (VT), промежуточные (FR) и медленно сокращающиеся (ST). Биохимически они различаются механизмами энергетического обеспечения мышечного сокращения. Их иннервируют разные мотонейроны, чем обусловлены неодновременность включения в работу и различная скорость сокращения волокон. Разные мышцы имеют разное сочетание типов волокон.

Мышечные волокна

Сухожилие

Рисунок.  Мышца

Каждая мышца состоит из нескольких тысяч мышечных волокон, объединяемых соединительными прослойками и такой же оболочкой. Мышца представляет собой многокомпонентный комплекс. Чтобы разобраться в строении мышцы следует изучить все уровни ее организации и структуры, входящие в ее состав.

У животных и человека два основных типа мышц: поперечнополосатые и гладкие, причем поперечнополосатые мышцы делятся на два вида – скелетные и сердечные. Гладкие мышцы характерны для внутренних органов, кровеносных сосудов.

Поперечнополосатые мышцы состоят из тысяч мышечных клеток – волокон. Волокна объединены соединительно-тканными прослойками и такой же оболочкой – фасцией. Мышечные волокна – миоциты -  представляют собой сильно вытянутые многоядерные клетки гигантских размеров от 0,1 до 10см длиной и толщиной около 0,1 – 0,2 мм.

Миоцит состоит из всех обязательных компонентов клетки. Особенностью мышечного волокна  является то, что внутри эта клетка содержит большое количество сократительных элементов –  миофибрилл. Как и другие клетки тела миоциты содержат ядро, причем,  у клеток поперечнополосатых мышц ядер несколько, рибосомы, митохондрии, лизосомы, цитоплазматическую сеть.

Цитоплазматическая сеть  называется в этих клетках саркоплазматической сетью. Она связана с помощью особых трубочек, называемых Т-трубочками, с клеточной мембранной – сарколеммой. Особо следует выделить в саркоплазматической сети пузырьки, называемые цистернами. Они содержат большое количество ионов кальция. С помощью специального фермента кальций накачивается в цистерны. Этот механизм называется кальциевым насосом и необходим для сокращения мышцы.

Цитоплазма или саркоплазма миоцитов  содержит большое количество белков. Здесь немало активных ферментов, среди которых важнейшими являются ферменты гликолиза, креатинкиназа. Немалое значение имеет белок миоглобин, сохраняющий кислород в мышцах.

Кроме белков в цитоплазме мышечных клеток содержатся фосфогены – АТФ, АДФ, АМФ, а также креатинфосфат, необходимые для нормального снабжения мышцы энергией.

Основной углевод мышечной ткани – гликоген. Его концентрация достигает 3%. Свободная глюкоза в саркоплазме встречается в малых концентрациях. В тренируемых на выносливость мышцах накапливается запасной жир.  

Снаружи сарколемма окружена нитями белка – коллагена. Мышечное волокно растягивается и возвращается в исходное состояние за счет упругих сил, возникающих в коллагеновой оболочке.

2. Строение миофибрилл.

Сократительные элементы – миофибриллы – занимают большую часть объема миоцитов. В нетренированных мышцах миофибриллы расположены, рассеяно, а тренированных они сгруппированы в пучки, называемые полями Конгейма.

Микроскопическое изучение строения миофибрилл показало, что они имеют диаметр около 1 мкм и состоят из чередующихся светлых и темных участков или дисков. В мышечных клетках миофибриллы располагаются таким образом, что светлые и темные участки рядом расположенных миофибрилл совпадают, что создает видимую под микроскопом поперечную исчертанность всего мышечного волокна.

Использование электронного микроскопа с очень большим увеличением позволило расшифровать строение миофибрилл и установить причины наличия у них светлых и темных участков. Было обнаружено, что миофибриллы являются сложными структурами, построенными в свою очередь, из большого числа мышечных нитей дух типов – толстых и тонких. Толстые в два раза толще тонких, соответственно 15 и 7 нм.

Состоят миофибриллы из чередующихся пучков параллельно расположенных толстых и тонких нитей, которые концами заходят друг на друга.

Участок миофибриллы, состоящий из толстых нитей и находящимися между ними концов тонких нитей, обладает двойным лучепреломлением. Под микроскопом  эти участки кажутся темными  и получили название анизотропных или темных дисков (А-диски).

Тонкие участки состоят из тонких нитей и выглядят светлыми, так как не обладают двойным лучепреломлением и легко пропускают свет. Такие участки называются изотропными или светлыми дисками (I-диски).

                   Z                                       Z                                        Z

—   —   —   —

—   —   —   —

—   —   —   —

        

    I-диск       А-диск

Рисунок. Схема строения миофибриллы

 

В середине пучка тонких нитей (диск I) поперечно располагается тонкая пластинка из белка, которая фиксирует положение мышечных нитей в пространстве и одновременно упорядочивая расположение А- и I-дисков многих миофибрилл.  Эта пластинка хорошо видна под микроскопом и названа Z-пластинкой или Z-линией.

Диски А имеют в середине более светлую полосу –  зону Н, пересекаемую более темной М – зоной.

Участок между соседними Z-линиями называется саркомер. Каждая миофибрилла состоит из нескольких сотен саркомеров (до 1000-1200).

саркомер

а 

                                I-диск                А-диск                I-диск

 

Рисунок. Структура мышцы на разных уровнях организации: а  мышечное волокно; б – расположение миофибриллы в покоящейся мышце

Каждый саркомер включает: 1) сеть поперечных трубочек, ориентированных под углом 90° к продольной оси волокна и соединяющихся с наружной поверхностью клетки; 2) саркоплаз-матический ретикулум, составляющий 8—10% объема клетки; 3) несколько митохондрий.

Диски I состоят только из тонких филаментов, а диски А – из филаментов двух типов. Зона Н содержит только толстые филаменты, линия Z скрепляет тонкие филаменты между собой. Между толстыми и тонкими филаментами расположены поперечные мостики (спайки) толщиной около 3 нм; расстояние между этими мостиками 40 нм.

Изучение химического состава миофибрилл показало, что тонкие и толстые нити образованы белками. Палочковидная молекула миозина состоит из двух идентичных основных цепей (по 200 кДа) и четырех легких цепей (по 20 кДа), общая масса миозина около 500 кДа.

Толстые нити состоят из белка миозина. Эти белки образуют двойную спираль с глобулярной головкой на конце, присоединенной к очень длинному стержню. Стержень представляет собой двухцепочечную а-спирализованную суперспираль.

Миозиновые головки обладают АТФазной активностью, то  есть способностью расщеплять АТФ. Второй участок миозина обеспечивает связь толстых нитей с тонкими. Общая структура миозина показана на рисунке.

хвост

Рисунок. Схематичное изображение молекулы миозина

Тонкие нити состоят из белков актина, тропонина и тропомиозина.

Основной белок в данном случае актин. Он обладает двумя важнейшими свойствами:

  •  образует фибриллярный актин, способный к быстрой полимеризации;
  •  актин способен соединяться с миозиновыми головками поперечными мостиками.

Актин  водорастворимый глобулярный белок с молекулярной массой 42 кДа; эта форма актина обозначается как G-актин. В мышечном волокне актин находится в полимеризованной форме, которая обозначается как F-актин. Тонкие филаменты мышцы образованы двунитчатыми актиновыми структурами, связанными между собой нековалентными связями.

Другие белки тонких нитей помогают актину осуществлять его функции.

Тропонин (Тн), молекулярная масса которого около 76 кДа. Он представляет собой сферическую молекулу, состоящую из трех разных субъединиц, получивших название в соответствии с выполняемыми функциями: тропомиозинсвязывающей (Тн-Т), ингибирующей (Тн-1) и кальцийсвязывающей (Тн-С). Каждый компонент тонких филаментов соединяется с двумя другими нековалентными связями:

          F-актин — тропомиозин
Тн-1
 Тн-Т

В мышце, где все рассмотренные компоненты собраны вместе в тонком филаменте (рис.), тропомиозин блокирует присоединение миозиновой головки к находящемуся рядом молекулами глобулярного актина тонких нитей (F-актину).

   

Молекулы миозина объединяются, образуя филаменты, состоящие примерно из 400 палочковидных молекул, связанных друг с другом таким образом, что пары головок миозиновых молекул ложатся на расстоянии 14,3 нм друг от друга; они располагаются по спирали (рис.). Миозиновые нити стыкуются «хвост к хвосту».

Рисунок. Упаковка миозиновых молекул при образовании толстого филамента

Миозин выполняет три биологически важные функции:

При физиологических значениях ионной силы и рН молекулы миозина спонтанно образуют волокно.

Миозин обладает каталитической активностью, т. е. является ферментом. В 1939 г. ВА Энгельгардт и М.Н. Любимова обнаружили, что миозин способен катализировать гидролиз АТФ. Эта реакция является непосредственным источником свободной энергии, необходимой для мышечного сокращения.

Миозин связывает полимеризованную форму актина — основного белкового компонента тонких миофибрилл. Именно это взаимодействие, как будет показано ниже, играет ключевую роль в мышечном сокращении.

Строение и механизм сокращения скелетных мышц.

        

3. Механизм мышечного сокращения и расслабления.

Подвижность является характерным свойством всех форм жизни. Направленное движение имеет место при расхождении хромосом в процессе клеточного деления, активном транспорте молекул, перемещении рибосом в ходе белкового синтеза, сокращении и расслаблении мышц. Мышечное сокращение — наиболее совершенная форма биологической подвижности. В основе любого движения, в том числе и мышечного, лежат общие молекулярные механизмы.

У человека различают несколько видов мышечной ткани. Поперечно-полосатая мышечная ткань составляет мышцы скелета (скелетные мышцы, которые мы можем сокращать произвольно). Гладкая мышечная ткань входит в состав мышц внутренних органов: желудочно-кишечного тракта, бронхов, мочевыводящих путей, кровеносных сосудов. Эти мышцы сокращаются непроизвольно, независимо от нашего сознания.

В данной главе мы рассмотрим строение и процессы сокращения и расслабления скелетных мышц, поскольку именно они представляют наибольший интерес для биохимии спорта.

Механизм мышечного сокращения до настоящего времени раскрыт не полностью.

Достоверно известно следующее.

1. Источником энергии для мышечного сокращения являются молекулы АТФ.

2. Гидролиз АТФ катализируется при мышечном сокращении миозином, обладающим ферментативной активностью.

3. Пусковым механизмом мышечного сокращения является повышение концентрации ионов кальция в саркоплазме миоцитов, вызываемое нервным двигательным импульсом.

4. Во время мышечного сокращения между тонкими и толстыми нитями миофибрилл возникают поперечные мостики или спайки.

5. Во время мышечного сокращения происходит скольжение тонких нитей вдоль толстых, что приводит к укорочению миофибрилл и всего мышечного волокна в целом.

Гипотез объясняющих механизм мышечного сокращения много, но наиболее обоснованной является так называемая гипотеза (теория) «скользящих нитей» или «гребная гипотеза».

В покоящейся  мышце тонкие и толстые нити находятся в разъединенном состоянии.

Под воздействием нервного импульса ионы кальция выходят из цистерн  саркоплазматической сети и присоединяются к белку тонких нитей – тропонину.  Этот белок меняет свою конфигурацию и меняет конфигурацию актина. В результате  образуется поперечный мостик между актином тонких нитей  и миозином толстых нитей. При этом повышается АТФазная активность миозина. Миозин расщепляет АТФ и за счет выделившейся при этом энергии миозиновая головка подобно шарниру или веслу лодки поворачивается, что приводит к скольжению мышечных нитей навстречу друг другу.

Совершив поворот, мостики между нитями разрываются. АТФазная активность миозина резко снижается , прекращается гидролиз АТФ. Однако при дальнейшем поступлении нервного импульса поперечные мостики вновь образуются, так как процесс, описанный выше, повторяется вновь.  

В каждом цикле сокращения расходуется 1 молекула АТФ.   

В основе мышечного сокращения лежат два процесса:

спиральное скручивание сократительных белков;

циклически повторяющееся образование и диссоциация комплекса между цепью миозина и актином.

Мышечное сокращение инициируется приходом потенциала действия на концевую пластинку двигательного нерва, где выделяется нейрогормон ацетилхолин, функцией которого является передача импульсов. Сначала ацетилхолин взаимодействует с ацетилхолиновыми рецепторами, что приводит к распространению потенциала действия вдоль сарколеммы. Все это вызывает увеличение проницаемости сарколеммы для катионов Na+, которые устремляются внутрь мышечного волокна, нейтрализуя отрицательный заряд на внутренней поверхности сарколеммы. С сарколеммой связаны поперечные трубочки саркоплазматического ретикулума, по которым распространяется волна возбуждения. От трубочек волна возбуждения передается мембранам пузырьков и цистерн, которые оплетают миофибриллы на участках, где происходит взаимодействие актиновых и миозиновых нитей. При передаче сигнала на цистерны саркоплазматического ретикулума, последние начинают освобождать находящийся в них Са2+. Высвобожденный Са2+ связывается с Тн-С, что вызывает конформационные сдвиги, передающиеся на тропомиозин и далее на актин. Актин как бы освобождается из комплекса с компонентами тонких филамен-тов, в котором он находился. Далее актин взаимодействует с миозином, и результатом такого взаимодействия является образование спайки, что делает возможным движение тонких нитей вдоль  толстых.

Генерация силы (укорочение) обусловлена характером взаимодействия между миозином и актином. На миозиновом стержне имеется подвижный шарнир, в области которого происходит поворот при связывании глобулярной головки миозина с определенным участком актина. Именно такие повороты, происходящие одновременно в многочисленных участках взаимодействия миозина и актина, являются причиной втягивания актиновых филаментов (тонких нитей) в Н-зону. Здесь они контактируют (при максимальном укорочении) или даже перекрываются друг с другом, как это показано на рисунке.

                                       а                                                     

                                                                          б      в

Рисунок.  Механизм сокращения: а — состояние покоя; б — умеренное сокращение; в – максимальное сокращение


Энергию для этого процесса поставляет гидролиз АТФ. Когда АТФ присоединяется к головке молекулы миозина, где локализован активный центр миозиновой АТФазы, связи между тонкой и толстой нитями не образуется. Появившийся катион кальция нейтрализует отрицательный заряд АТФ, способствуя сближению с активным центром миозиновой АТФазы. В результате происходит фосфорилирование миозина, т. е. миозин заряжается энергией, которая используется для образования спайки с актином и для продвижения тонкой нити. После того как тонкая нить продвинется на один «шаг», АДФ и фосфорная кислота отщепляются от актомиозинового комплекса. Затем к миозиновой головке присоединяется новая молекула АТФ, и весь процесс повторяется со следующей головкой молекулы миозина.

Затрата АТФ необходима и для расслабления мышц. После прекращения действия двигательного импульса Са2+ переходит в цистерны саркоплазматического ретикулума. Тн-С теряет связанный с ним кальций, следствием этого являются конформаци-онные сдвиги в комплексе тропонин-тропомиозин, и Тн-I снова закрывает активные центры актина, делая их неспособными взаимодействовать с миозином. Концентрация Са2+ в области сократительных белков становится ниже пороговой, и мышечные волокна теряют способность образовывать актомиозин.

В этих условиях эластические силы стромы, деформированной в момент сокращения, берут верх, и мышца расслабляется. При этом тонкие нити извлекаются из пространства между толстыми нитями диска А, зона Н и диск I приобретают первоначальную длину, линии Z отдаляются друг от друга на прежнее расстояние. Мышца становится тоньше и длиннее.

Скорость гидролиза АТФ при мышечной работе огромна: до 10 мк моль на 1 г мышцы за 1 мин. Общие запасы АТФ невелики, поэтому для обеспечения нормальной работы мышц АТФ должна восстанавливаться с той же скоростью, с какой она расходуется.

Расслабление мышцы происходит после прекращения поступления длительного нервного импульса. При этом проницаемость стенки цистерн саркоплазматической сети уменьшается, и ионы кальция под действием кальциевого насоса,  используя энергию АТФ, уходят в цистерны. Концентрация ионов кальция  в саркоплазме быстро снижается до исходного уровня.Белки вновь приобретают конформацию  характерную для состояния покоя.

Таким образом, и процесс мышечного сокращения и процесс мышечного расслабления – это активные процессы, идущие с затратами энергии в виде молекул АТФ,

В гладких мышцах нет миофибрилл.  Тонкие нити присоединяются к сарколемме, толстые находятся внутри волокон. Ионы кальция также играют роль в сокращении, но поступают в мышцу не из  цистерн, а из внеклеточного вещества, поскольку в гладких мышцах отсутствуют цистерны с ионами калькия. Этот процесс медленный и поэтому медленно работают гладкие мышцы.  

Рисунок. Схема расположения толстых и тонких нией в гладких мышечных волокнах.



 

Другие похожие работы, которые могут вас заинтересовать.
379. ЭНЕРГЕТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ МЫШЕЧНОГО СОКРАЩЕНИЯ 33.58 KB
  Количественные критерии путей ресинтеза АТФ. Аэробный путь ресинтеза АТФ. Анаэробные пути ресинтеза АТФ. Соотношения между различными путями ресинтеза АТФ при мышечной работе.
17220. Биохимия 122.66 KB
  Опишите изменение обмена веществ в клетках-мишенях под действием инсулина укажите: характер влияния гормона на уровень циклических нуклеотидов; изменение проницаемости мембран для различных веществ; регулируемые биохимические процессы; конечный биологический эффект...
21483. БИОХИМИЯ ГОРМОНОВ 63.62 KB
  Гормоны являются первичными посредниками между центральной нервной системой и тканевыми процессами. Термин гормоны 1905 году ввели ученые Бейлис и Старлинг. Их называют по месту образования инсулин от insul-островок по физиологическому эффекту вазопрессин гормоны передней доли гипофиза имеют окончание – тропин окончание – либерин и – статин указывает на гипоталамические гормоны.
21608. БИОХИМИЯ КРОВИ 95.89 KB
  Гемоглобин по своей химической природе относится к гемопротеидам, состоит из простатической группы гема и белка глобина. Гем - тетрапирольное железосодержащее органическое вещество. Гем соединяется с гемоглобином гидрофобными связями и координационной связью с железом. Гемоглобин является олигомерным белком, включает в свой состав 4 гема и 4 полипептидные цепи.
10034. Пути сокращения производственных запасов 106.84 KB
  На сегодняшний момент времени, главная задача предприятий - значительное повышение качества производственного процесса, его эффективности, отдачи вложений, в том числе и производственных, которые являются базой всего производства.
15050. Пути сокращения затрат предприятия ООО «Томак-2» 138.77 KB
  Проблемы снижения затрат на предприятии, поиска путей их решения являются сложными и интересными вопросами современной экономики предприятия. Проблема снижения затрат очень актуальна в современных экономических условиях, так как ее решение позволяет каждому конкретному предприятию выжить в условиях жесткой рыночной конкуренции, построить крепкое и сильное предприятие, которое будет иметь хороший экономический потенциал.
5067. Гладкие мышцы. Строение, функции, механизм сокращения 134.79 KB
  Мышцы или мускулы от лат. Мышцы позволяют двигать частями тела и выражать в действиях мысли и чувства. Гладкие мышцы являются составной частью некоторых внутренних органов и участвуют в обеспечении функции выполняемые этими органами.
17984. Перспективы сокращения и социально-экономическое значение государственного долга Российской Федерации 395.55 KB
  Причины возникновения государственного долга Российской Федерации. Анализ и современное состояние государственного внутреннего долга Российской Федерации. Анализ и современное состояние государственного внешнего долга Российской Федерации. Перспективы сокращения и социально-экономическое значение государственного долга Российской Федерации...
11490. Пути сокращения длительности товарооборота предприятий розничной торговли (на материалах ООО «Диана», г. Курган) 176.54 KB
  Размер товарных запасов является синтетическим показателем, позволяющим в известной мере оценивать результаты хозяйственной деятельности, как отдельных торговых предприятий, организаций, так и отрасли в целом, а также эффективность использования материальных и трудовых ресурсов.
12159. О стратегической стабильности в прошлом и настоящем и ее значении для выработки подходов к ограничению и сокращения вооружений 17.33 KB
  Проведен анализ угроз стратегической стабильности сформировавшихся за последние годы прежде всего за счет распространения ядерного оружия. Показано что стратегическая стабильность в большей степени чем прежде зависит от нарушения региональной стабильности. Проблема обеспечения ядерной стабильности остается актуальной и для диадных отношений РоссияСША.
© "REFLEADER" http://refleader.ru/
Все права на сайт и размещенные работы
защищены законом об авторском праве.