Опасные и чрезвычайные ситуации техногенного характера

Чрезвычайная ситуация ЧС – обстановка на определенной территории сложившаяся в результате аварии опасного природного явления катастрофы стихийного или иного бедствия которые могут повлечь или повлекли за собой человеческие жертвы ущерб здоровью или окружающей природной среде значительные материальные потери и нарушение условий жизнедеятельности людей. С этой точки зрения ЧС можно подразделить: на внезапные взрывы транспортные аварии землетрясения и т.; стремительные пожары выброс газообразных сильнодействующих ядовитых...

2015-02-09

872.52 KB

11 чел.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Тема 2 Опасные и чрезвычайные ситуации техногенного характера

2.1. Понятие об опасных и чрезвычайных ситуациях в техносфере Основные термины и определения

Жизнедеятельность — повседневная деятельность или способ существования человека.

Происшествие — опасное событие, связанное с незначительным причинением ущерба людским, природным или материальным ресурсам.

Опасность — негативное свойство живой и неживой материи, способное причинять ущерб самой материи: людям, природной среде, материальным и культурным ценностям, человеческому сообществу в целом и самой Земле. Источником опасности может быть все живое и неживое. Различают опасности естественного и антропогенного происхождения.

Чем выше преобразующая деятельность человека, тем выше уровень антропогенных опасностей – вредных и травмирующих факторов.

Вредный фактор — негативное воздействие на человека или иные объекты, которое приводит к ухудшению самочувствия или заболеванию (разрушению, отказу в работе).

Травмирующий фактор — негативное воздействие на человека, которое приводит к травме или летальному исходу.

Антропогенные опасности — опасности, возникающие при любом виде жизнедеятельности человека (производство, сельское хозяйство, транспорт, переработка и пр.).

Техногенная опасная ситуация — неблагоприятная обстановка техногенного происхождения, приведшая к выходу из строя, повреждению или разрушению технических устройств, транспортных средств, зданий, сооружений.

Авария — происшествие в технической сфере (системе), не сопровождающееся гибелью людей и непоправимым разрушением технических средств; не всякая авария является источником чрезвычайной ситуации.

Катастрофа — происшествие в технической системе, сопровождающееся гибелью людей, необратимым разрушением технических средств; соответствует признакам чрезвычайной ситуации.

Чрезвычайная ситуация (ЧС) – обстановка на определенной территории, сложившаяся в результате аварии, опасного природного явления, катастрофы, стихийного или иного бедствия, которые могут повлечь или повлекли за собой человеческие жертвы, ущерб здоровью или окружающей природной среде, значительные материальные потери и нарушение условий жизнедеятельности людей. Чрезвычайные ситуации возникают намного реже, чем порождающие их опасные ситуации. Поэтому от ЧС страдает намного меньше людей, чем от повседневных опасностей. Например, в России от опасностей на дорогах ежегодно погибает 35 тыс. человек; но из этих 35 тыс. опасных ситуаций к ЧС относится не более 10%.

Таким образом, ЧС – это более тяжкая разновидность опасной ситуации.__   Система «человек – среда обитания» Человек и окружающая его среда гармонично взаимодействуют и развиваются лишь в условиях, когда потоки энергии, вещества и информации находятся в пределах, благоприятно воспринимаемых человеком и природной средой. При этом любое превышение привычных уровней потоков сопровождается негативным воздействием на человека или природную среду.

В условиях техносферы, когда величина любого потока меняется от минимально значимой до максимально возможной, можно выделить ряд характерных состояний системы «человек – среда обитания»:

• комфортное (оптимальное) – потоки вещества и энергии соответствуют оптимальным условиям взаимодействия, обеспечивают благоприятные условия деятельности и отдыха, создают предпосылки для проявления наивысшей работоспособности и, как следствие, продуктивной деятельности, гарантируют сохранение здоровья человека и целостности компонента «среда обитания»;

• допустимое — потоки веществ и энергии, воздействуя на человека и среду обитания, не оказывают негативного влияния на здоровье, но приводят к дискомфорту, снижая эффективность деятельности человека; соблюдение условий данного состояния не приводит к необратимым негативным процессам у человека и в среде обитания;

• опасное — потоки вещества и энергии превышают допустимые уровни и оказывают негативное воздействие на здоровье человека, при длительном воздействии вызывают заболевания и приводят к деградации природной среды;

• чрезвычайно опасное — потоки высоких уровней за короткий период времени могут нанести травму, привести к летальному исходу, вызвать разрушения в природной среде.

Основные факторы возникновения опасных и чрезвычайных ситуаций техногенного характера Основными факторами возникновения опасностей и ЧС техногенного характера являются:

• неустойчивое (напряженное) состояние объекта (личности, общества, государства, системы), при котором воздействие на него всех потоков вещества, энергии и/или информации превышают максимально допустимые значения (это снижает способности предупреждения, ослабления, устранения и отражения опасностей);

• увеличение энергоемкости, внедрение новых технологий и материалов, опасных для природы и человека;

• несовершенство и устарелость оборудования, снижение технологической и трудовой дисциплины;

• накопление отходов производства и энергетики, в т. ч. химических и радиоактивных;

• недостатки контроля надзорных органов и государственных инспекций;

• нехватка квалифицированных кадров, обладающих культурой безопасности на производстве и в быту;

• недостаточный уровень предупредительных мероприятий по уменьшению масштабов и последствий чрезвычайных ситуаций, снижению риска их возникновения.

Перечисленные факторы повышают риск возникновения опасных ситуаций, аварий и катастроф техногенного характера во всех сферах хозяйственной деятельности.

3.2. Виды опасных и чрезвычайных ситуаций техногенного характера 

Классификация ЧС по масштабу распространения Постановление Правительства Российской Федерации от 21 мая 2007 г. № 304 «О классификации чрезвычайных ситуаций природного и техногенного характера» определяет 6 типов ЧС в зависимости от территории распространения, количества людей, погибших или получивших ущерб здоровью, либо размера ущерба:

• ЧС локального характера — не выходит за пределы территории объекта, при этом количество пострадавших не более 10 человек или размер ущерба не более 100 тыс. руб.;

• ЧС муниципального характера — не выходит за пределы территории одного поселения или внутри городской территории города федерального значения, при этом количество пострадавших составляет не более 50 человек либо размер ущерба составляет не более 5 млн руб.;

• ЧС межмуниципального характера — затрагивает территорию двух и более поселений, внутригородских территорий города федерального значения или межселенную территорию, при этом количество пострадавших либо ущерба аналогично критериям ЧС муниципального характера;

• ЧС регионального характера — не выходит за пределы территории одного субъекта РФ, количество пострадавших составляет свыше 50 человек, но не более 500 человек, либо размер ущерба составляет свыше 5 млн руб., но не более 500 млн руб.;

• ЧС межрегионального характера — затрагивает территорию двух и более субъектов РФ, количество пострадавших либо размер ущерба аналогичен критериям ЧС регионального характера;

• ЧС федерального характера — количество пострадавших свыше 500 человек либо размер ущерба свыше 500 млн руб.

Классификация ЧС по темпу развития 

Каждому виду чрезвычайных ситуаций свойственна своя скорость распространения опасности, являющаяся важной составляющей интенсивности протекания чрезвычайного события и характеризующая степень внезапности воздействия поражающих факторов. С этой точки зрения ЧС можно подразделить:

• на внезапные (взрывы, транспортные аварии, землетрясения и т. д.);

• стремительные (пожары, выброс газообразных сильнодействующих ядовитых веществ, гидродинамические аварии с образованием волн прорыва и т. д.);

• умеренные (выброс радиоактивных веществ, аварии на коммунальных системах и т. д.);

• плавные (аварии на очистных сооружениях, эпидемии и т. д.).

Плавные (медленные) чрезвычайные ситуации могут длиться многие месяцы и годы, например, последствия антропогенной деятельности в зоне Аральского моря.

Классификация ЧС по видам чрезвычайных событий 

Для практических нужд общую классификацию ЧС целесообразно строить по типам и видам лежащих в их основе чрезвычайных событий; при этом можно частично в тех или иных звеньях классификационной структуры использовать принадлежность, причинность или масштаб ЧС. По такому комплексу признаков все ЧС мирного времени разбивают на шесть групп (рис. 1).

Рис. 1. Классификация ЧС техногенного характера по виду чрезвычайных событий Перечень ЧС по группам приведен в табл. 3.

Таблица 3 Перечень чрезвычайных ситуаций техногенного характера по группам

Классификация ЧС по природе источника возникновения

По природе источников возникновения все ЧС подразделяются на 5 групп.

1. ЧС, связанные с возникновением аварий на опасных объектах:

• аварии на атомных электростанциях (АЭС);

• утечки радиоактивных газов на предприятиях ядерно-топливного цикла за пределы санитарно-защитной зоны (СЗЗ);

• аварии на атомных судах с радиоактивными загрязнениями акватории порта и прибрежной территории;

• аварии на ядерных установках инженерно-исследовательских центров с радиоактивным загрязнением территории;

• аварийные ситуации во время промышленных и испытательных ядерных взрывов, связанные со сверхнормативным выбросом радиоактивных веществ в окружающую среду;

• падение летательных аппаратов с ядерными энергетическими устройствами на борту с последующим радиоактивным загрязнением местности;

• незначительные загрязнения местности радиоактивными веществами при утере источников ионизирующих излучений, аварий на транспорте, перевозящем радиоактивные препараты, и в некоторых других случаях;

• аварии на химически опасных объектах с выбросом (утечкой) в окружающую среду аварийно химически опасных веществ (АХОВ);

• аварии с выбросом (утечкой) в окружающую среду бактериологических веществ или биологических веществ в концентрациях, превышающих допустимые значения.

2. ЧС, обусловленные пожарами и взрывами и их последствиями:

• пожары в населенных пунктах, на объектах народного хозяйства и транспортных коммуникациях; иных аппаратов);

• взрывы в жилых зданиях.

3. ЧС на транспортных коммуникациях:

• авиационные катастрофы;

• столкновения и сход с рельсов железнодорожных составов (поездов в метрополитене); • аварии на водных коммуникациях;

• аварии на трубопроводах, вызвавшие выброс большой массы транспортируемых веществ и загрязнение ими окружающей среды;

• аварии на энерго– и других инженерных сетях, повлекшие нарушение нормальной жизнедеятельности населения в результате возникновения вторичных факторов.

4. ЧС, вызванные стихийными бедствиями:

• землетрясения силой 5 и более баллов по 12-балльной шкале;

• ураганы, смерчи, бури силой 10 и более баллов по 17-балльной шкале;

• катастрофические затопления и наводнения, образовавшиеся в результате разрушения гидротехнических сооружений, землетрясений, горных обвалов и оползней, паводков, половодья или нагонных явлений и цунами;

• сели, оползни, обвалы, лавины, снежные заносы и карстовые явления, вызвавшие разрушения в городах, на транспортных, энергетических и других инженерных сетях, образование завалов и т. п.;

• массовые, лесные и торфяные пожары, принявшие неуправляемый характер и повлекшие нарушение нормальной жизнедеятельности населения региона;

• факторы риска биолого-социального характера: эпидемии, эпизоотии и эпифитотии2.

5. ЧС военно-политического характера в мирное время:

• одиночный (случайный) ракетно-ядерный удар, нанесенный с акватории нейтральных вод кораблем неустановленной принадлежности или падение носителя ядерного оружия со взрывом боевой части;

• падение носителя ядерного оружия с разрушением или без разрушения боевой части;

• вооруженное нападение на штабы, пункты управления, узлы связи, склады войсковых соединений и частей (в т. ч. и ГО).

Эпидемия – массовое распространение инфекционного заболевания людей в какой-либо местности, стране, значительно превышающее обычный уровень заболеваемости этой болезнью.

Эпизоотия – массовое распространение инфекционного заболевания животных в какой-либо местности, значительно превышающее обычный уровень заболеваемости.

Эпифитотия – поражение сельскохозяйственных растений болезнями и вредителями.

Контрольные вопросы и задания

1. Дайте определение понятия «чрезвычайная ситуация».

2. Какое состояние системы «человек – среда обитания» называют комфортным?

3. По каким признакам классифицируют чрезвычайные ситуации?

4. Как классифицируются чрезвычайные ситуации по масштабу и числу пострадавших?

5. На какие группы подразделяются чрезвычайные ситуации техногенного характера по природе их возникновения?  

Тема 2 Происшествия с выбросом радиоактивных веществ

5.1. Ионизирующее излучение Явление радиоактивности и его применение

Радиоактивность — самопроизвольный распад ядер атомов нестабильных химических элементов (изотопов), сопровождающийся выделением (излучением) потока элементарных частиц и квантов электромагнитной энергии. При взаимодействии такого потока с веществом происходит образование ионов разного (положительного и отрицательного) знака, поэтому это явление называют еще ионизирующим излучением.

Явление радиоактивности – одно из свойств, присущее, подобно массе или температуре, любому веществу Вселенной. В повседневной жизни мы постоянно подвергаемся воздействию излучения, поскольку естественные радиоактивные вещества (радионуклиды) рассеяны в живой и неживой природе.

Явление радиоактивности (ионизации) было открыто в 1896 году Анри Беккерелем, обнаружившим способность солей урана испускать «таинственные лучи», проникающие повсюду. Пьер и Мария Кюри сумели объяснить это явление и выделить новые радиоактивные элементы – полоний и радий. С тех пор радиоактивность интенсивно изучается.

Сегодня явления радиоактивности широко используются – это ядерное оружие, ядерная энергетика, а также новые системы переработки радиоактивного сырья и отходов, широкое применение радиоактивных элементов в различных областях науки, техники, медицины.

Энергетический кризис человечеству не грозит, так как в ядре атома, ничтожно малом объеме вещества, хранится огромное количество энергии: всего 30 г урана-235 вполне достаточно, чтобы в течение суток питать энергией электростанцию мощностью 5 тыс. кВт, обычно сжигающую за этот время около 100 т угля.

Виды ионизирующих излучений Ионизирующие излучения (ИИ) — потоки элементарных частиц (электронов, позитронов, протонов, нейтронов) и квантов электромагнитной энергии, прохождение которых через вещество приводит к ионизации (образованию разнополярных ионов) и возбуждению его атомов и молекул.

Ионизация — превращение нейтральных атомов или молекул в электрически заряженные частицы – ионы.

ИИ попадают на Землю в виде космических лучей, возникают в результате радиоактивного распада атомных ядер (απ β-частицы, γ– и рентгеновские лучи), создаются искусственно на ускорителях заряженных частиц.

Практический интерес представляют наиболее часто встречающиеся виды ИИ – потоки а– и β-частиц, γ-излучение, рентгеновские лучи и потоки нейтронов.

Альфа-излучение (а) – поток положительно заряженных частиц – ядер гелия. В настоящее время известно более 120 искусственных и естественных альфа-радиоактивных ядер, которые, испуская α-частицу, теряют 2 протона и 2 нейтрона. Скорость частиц при распаденостью, длина их пробега (расстояние от источника до поглощения) в теле равна 0,05 мм, в воздухе – 8–10 см. Они не могут пройти даже через лист бумаги, но плотность ионизации на единицу величины пробега очень велика (на 1 см до десятка тысяч пар), поэтому эти частицы обладают наибольшей ионизирующей способностью и опасны внутри организма.

Бета-излучение (β) – поток отрицательно заряженных частиц. В настоящее время известно около 900 бета-радиоактивных изотопов. Масса β-частиц в несколько десятков тысяч раз меньше α-частиц, но они обладают бо́льшей проникающей способностью. Их скорость равна 200–300 тыс. км/с. Длина пробега потока от источника в воздухе составляет 1800 см, в тканях человека – 2,5 см. β-частицы полностью задерживаются твердыми материалами (алюминиевой пластиной в 3,5 мм, органическим стеклом); их ионизирующая способность в 1000 раз меньше, чем у α-частиц.

Гамма-излучение (γ) – электромагнитное излучение с длиной волны от 1 · 10-7 м до 1 · 10-14 м; испускается при торможении быстрых электронов в веществе. Оно возникает при распаде большинства радиоактивных веществ и обладает большой проникающей способностью; распространяется со скоростью света. В электрических и магнитных полях γ-лучи не отклоняются. Это излучение обладает меньшей ионизирующей способностью, чем а– и βизлучение, так как плотность ионизации на единицу длины очень низкая.

Рентгеновское излучение может быть получено в специальных рентгеновских трубках, в электронных ускорителях, при торможении быстрых электронов в веществе и при переходе электронов с внешних электронных оболочек атома на внутренние, когда создаются ионы.

Рентгеновские лучи, как и γ-излучение, обладают малой ионизирующей способностью, но большой глубиной проникновения.

Нейтроны — элементарные частицы атомного ядра, их масса в 4 раза меньше массы αчастиц. Время их жизни – около 16 мин. Нейтроны не имеют электрического заряда. Длина пробега медленных нейтронов в воздухе составляет около 15 м, в биологической среде – 3 см; для быстрых нейтронов – соответственно 120 м и 10 см. Последние обладают высокой проникающей способностью и представляют наибольшую опасность.

Выделяют два вида ионизирующих излучений: • корпускулярное, состоящее из частиц с массой покоя, отличной от нуля (α-, β– и нейтронное излучения); • электромагнитное (γ– и рентгеновское излучение) – с очень малой длиной волны.

Для оценки воздействия ионизирующего излучения на любые вещества и живые организмы используются специальные величины – дозы излучения.

Основная характеристика взаимодействия ионизирующего излучения и среды – это ионизационный эффект. В начальный период развития радиационной дозиметрии чаще всего приходилось иметь дело с рентгеновским излучением, распространявшимся в воздухе.

Поэтому в качестве количественной меры поля излучения использовалась степень ионизации воздуха рентгеновских трубок или аппаратов. Количественная мера, основанная на величине ионизации сухого воздуха при нормальном атмосферном давлении, достаточно легко поддающаяся измерению, получила название экспозиционная доза.

Экспозиционная доза определяет ионизирующую способность рентгеновских и γлучей и выражает энергию излучения, преобразованную в кинетическую энергию заряженных частиц в единице массы атмосферного воздуха. Экспозиционная доза – это отношение суммарного заряда всех ионов одного знака в элементарном объеме воздуха к массе воздуха в этом объеме. В системе СИ единицей измерения экспозиционной дозы является кулон, деленный на килограмм (Кл/кг). Внесистемная единица – рентген (Р). 1 Кл/кг = 3880 Р.

При расширении круга известных видов ионизирующего излучения и сфер его приложения оказалось, что мера воздействия ионизирующего излучения на вещество не поддается простому определению из-за сложности и многообразности протекающих при этом процессов. Важнейшим из них, дающим начало физико-химическим изменениям в облучаемом веществе и приводящим к определенному радиационному эффекту, является поглощение энергии ионизирующего излучения веществом. В результате этого возникло понятие поглощенная доза.

Поглощенная доза показывает, какое количество энергии излучения поглощено в единице массы любого облучаемого вещества, и определяется отношением поглощенной энергии ионизирующего излучения на массу вещества. За единицу измерения поглощенной дозы в системе СИ принят грэй (Гр). 1 Гр – это такая доза, при которой массе 1 кг передается энергия ионизирующего излучения 1 Дж. Внесистемной единицей поглощенной дозы является рад. 1 Гр = 100 рад.

Изучение отдельных последствий облучения живых тканей показало, что при одинаковых поглощенных дозах различные виды радиации производят неодинаковое биологическое воздействие на организм. Обусловлено это тем, что более тяжелая частица (например, протон) производит на единице пути в ткани больше ионов, чем легкая (например, электрон).

При одной и той же поглощенной дозе радиобиологический разрушительный эффект тем выше, чем плотнее ионизация, создаваемая излучением. Чтобы учесть этот эффект, было введено понятие эквивалентной дозы.

Эквивалентная доза рассчитывается путем умножения значения поглощенной дозы на специальный коэффициент – коэффициент относительной биологической эффективности (ОБЭ) или коэффициент качества. Значения коэффициента для различных видов излучений приведены в табл. .

7Таблица 7 Коэффициент относительной биологической эффективности для различных видов излучений

Единицей измерения эквивалентной дозы в СИ является зиверт (Зв). Величина 1 Зв равна эквивалентной дозе любого вида излучения, поглощенной в 1 кг биологической ткани и создающей такой же биологический эффект, как и поглощенная доза в 1 Гр фотонного излучения. Внесистемной единицей измерения эквивалентной дозы является бэр (биологический эквивалент рада). 1 Зв = 100 бэр.

Одни органы и ткани человека более чувствительны к действию радиации, чем другие: например, при одинаковой эквивалентной дозе возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения разных органов и тканей следует учитывать с разным коэффициентом, который называется коэффициентом радиационного риска.

Умножив значение эквивалентной дозы на соответствующий коэффициент радиационного риска и просуммировав по всем тканям и органам, получим эффективную дозу, отражающую суммарный эффект для организма. Взвешенные коэффициенты устанавливают эмпирически и рассчитывают таким образом, чтобы их сумма для всего организма составляла единицу. Единицы измерения эффективной дозы совпадают с единицами измерения эквивалентной дозы. Она также измеряется в зивертах или бэрах.

Радиоактивные вещества и их активность Радиоактивные вещества принято оценивать по их активности.

Активность определяется числом распадов, происходящих в данном количестве вещества за единицу времени. Активность изотопа чаще определяется периодом полураспада.

Период полураспада радиоактивного изотопа — промежуток времени, за который число радиоактивных атомов данного изотопа уменьшается вдвое. Так, для урана-238 он составляет приблизительно 4,5 млрд лет, а для полония-212 – около 3 · 10-7 с.

Наиболее опасны те радиоактивные вещества, период полураспада которых близок к продолжительности жизни человека. Большую опасность для здоровья человека представляют наиболее распространенные в природе изотопы, например, стронций-90 (имеющий период полураспада 28 лет) и цезий-137 (период полураспада 33 года). Из короткоживущих радиоактивных изотопов наиболее распространен радон-222, составляющий 1/3 естественной радиации. Период его полураспада равен 3,8 суток.

В системе СИ активность измеряется в беккерелях (Бк). 1 Бк равен одному распаду ядра в секунду. Часто пользуются внесистемной единицей – кюри (Ки); 1 Ки = 3,7 · 1010 Бк.

Активность в ряде случаев измеряют в милликюри (мКи), составляющей 10-3 кюри, и микрокюри (мкКи) = 10-6кюри.

Воздействие ионизирующего излучения на живые организмы Биологическое действие ионизирующих излучений на организм имеет ряд особенностей:

• неся в себе огромную опасность для здоровья и жизни, оно неощутимо человеком;

• существует скрытый (инкубационный) период проявления действия ионизирующего излучения, который может быть весьма продолжительным;

• одним из видов последствий облучения являются так называемые генетические эффекты – разнообразные наследственные заболевания, возникающие в результате мутаций (изменений) в половых клетках;

• получаемые человеком дозы излучений накапливаются в организме (кумулятивный эффект), поэтому вероятность возникновения заболеваний пропорциональна длительности воздействия радиации;

• наиболее чувствительны к облучению дети в период роста;

• степень чувствительности к облучению различных органов и тканей человека неодинакова;

• радиочувствительность живых организмов также весьма различна (смертельная доза для бактерий в 100 раз превышает дозу для млекопитающих).

5.2. Радиационно опасные объекты и аварии на них 

Радиационно опасные объекты Ядерные технологии несут в себе опасность радиационного загрязнения окружающей среды и лучевого воздействия на живые организмы. Эксплуатация ядерных объектов показала, что, несмотря на все принимаемые меры, на них нельзя исключить возможность аварий, в т. ч. и с выбросом радиоактивных веществ в окружающую среду.

Радиационная авария — нарушение пределов безопасной эксплуатации ядерно-энергетической установки, оборудования или устройства, при которых произошел выход радиоактивных продуктов или ионизирующего излучения за предусмотренные проектом пределы их безопасной эксплуатации, приводящий к облучению населения и загрязнению окружающей среды. Причинами аварии могут быть нарушения барьеров безопасности, предусмотренных проектом реактора; образование критической массы при перегрузке, транспортировке и хранении ТВЭлов; нарушение контроля и управления цепной ядерной реакцией.

Радиационно опасные объекты (РОО) — научные, народнохозяйственные (промышленные) или оборонные объекты, при разрушениях которых могут произойти массовые радиационные поражения людей, животных и растений, а также заражение среды.

Радиационные аварии и их классификации В зависимости от вида радиационно опасного объекта, масштабов и опасности последствий существует несколько различных классификаций радиационных аварий, происшествий и инцидентов. В табл. 8 приведена одна из них, принятая Международным агентством по атомной энергии (МАГАТЭ) для оценки происшествия.

Таблица 8 Международная шкала оценки происшествий на АЭС, адаптированная для России

Зоны радиационно опасных объектов В период функционирования РОО с целью профилактики и контроля выделяют две основные зоны безопасности:

• санитарно-защитная зона (СЗЗ) — территория вокруг объекта, на которой уровень облучения людей в условиях нормальной эксплуатации объекта может превысить предельно допустимую дозу (ПДД);

• зона наблюдения — территория, где возможно влияние радиоактивных сбросов и выбросов РОО и где облучение проживающего населения может достигать установленной предельно допустимой дозы. На случай радиационной аварии рассматривают 5 зон, имеющих различную степень опасности для здоровья людей:

• зона возможного опасного радиоактивного загрязнения — территория, в пределах которой прогнозируются дозовые нагрузки, не превышающие 10 рад в год; • зона ограничений — территория, в пределах которой доза γ-облучения может превысить 10 рад (но не более 25 рад), а доза облучения щитовидной железы радиоактивным йодом – не более 30 рад;

• зона профилактических мероприятий — территория, в пределах которой доза внешнего γ-облучения населения за время формирования радиоактивного следа выброса при аварии на РОО может превысить 25 рад (но не более 75 рад), а доза облучения щитовидной железы радиоактивным йодом составляет около 30 рад (максимально – 50 рад);

• зона экстренных мер защиты населения — территория, в пределах которой доза внешнего γ-излучения населения может превысить 75 рад, а доза внутреннего облучения щитовидной железы радиоактивным йодом – 250 рад;

• зона радиационной аварии — территория, на которой могут быть превышены пределы дозы и пределы годового поступления.

После стабилизации радиационной обстановки в районе аварии устанавливаются зоны: • зона отчуждения (загрязнение по γ-излучению – свыше 20 мрад/ч; по цезию – свыше 40 Ки/км2; по стронцию – свыше 10 Ки/км2);

• зона временного отселения (загрязнение по γ-излучению – от 5 до 20 мрад/ч; по цезию – от 15 до 40 Ки/км2; по стронцию – от 3 до 10 Ки/км2);

• зона жесткого контроля (загрязнение по γ-излучению – от 3 до 5 мрад/ч; по цезию – до 15 Ки/км2; по стронцию – до 3 Ки/км2).   

5.3. Уровень радиации и предельно допустимые дозы облучения

Мощность дозы естественного (природного и техногенного) радиоактивного фона на территории РФ составляет 0,01–0,02 мР/ч.

Согласно Федеральному закону «О радиационной безопасности населения» № 3-ФЗ от 9 января 1996 г. и поправке к ст. 9 от 1999 г. с января 2000 года для населения средняя годовая эффективная доза равна 0,001 зиверта или эффективная доза за период жизни (70 лет) – 0,07 зиверта; в отдельные годы допустимы бо́льшие значения эффективной дозы при условии, что средняя годовая эффективная доза, исчисленная за пять последовательных лет, не превысит 0,001 зиверта.

После Чернобыльской аварии в РФ установлены следующие допустимые пределы радиационного фона: 15–19 мР/ч (миллирентген в час) – безопасно; 20–60 мР/ч – относительно безопасно; 61–120 мР/ч – зона повышенного внимания; 121 мР/ч и более – опасная зона.

Международная комиссия по радиационной защите (МКРЗ) рекомендует считать предельно допустимую дозу (ПДД) разового аварийного облучения – 25 бэр; ПДД профессионального хронического облучения – до 5 бэр в год; для ограниченных групп населения – 0,5 бэр. Генетически значимые дозы для населения находятся в пределах 7–55 мбэр/год.

Доза облучения может быть однократной и многократной. Однократным считается облучение, полученное за первые четверо суток. Если продолжительность облучения превышает этот срок, то оно считается многократным.

При облучении человека дозой менее 100 бэр отмечаются лишь легкие реакции организма, проявляющиеся в формуле крови, изменении вегетативных функций. При дозах более 100 бэр развивается острая лучевая болезнь, тяжесть течения которой зависит от дозы облучения. Признаки поражения организма человека при превышении так называемых пороговых значений доз облучения приведены в табл. 9.

Таблица 9 Признаки поражения человека в зависимости от дозы облучения

При радиоактивном заражении местности образуются зоны разной степени опасности для людей, которые характеризуются как мощностью дозы излучения (уровнем радиации) на неопределенное время после аварии, так и дозой, получаемой за определенное время.

По степени опасности зараженную местность на следе выброса и распространения радиоактивных веществ принято делить на следующие 5 зон:

• зона M (радиационной опасности) – 14 мрад/ч;

• зона А (умеренного заражения) – 140 мрад/ч;

• зона Б (сильного заражения) – 1,4 рад/ч;

• зона В (опасного заражения) – 4,2 рад/ч; • зона Г (чрезвычайно опасного заражения) – 14 рад/ч.

5.4. Мероприятия по предотвращению радиационных аварий, снижению потерь и ущерба

Основными мерами по предотвращению радиационных аварий и снижению ущерба от них являются:

• рациональное размещение РОО с учетом возможных последствий аварий;

• создание автоматизированной системы контроля радиационной обстановки (АСКРО);

• создание локальной системы оповещения персонала населения в 30-километровой зоне;

• первоочередное строительство и приведение в готовность защитных сооружений в радиусе 30 км вокруг АЭС, а также использование подвальных, встроенных и других легко герметизируемых помещений;

• определение количества населенных пунктов и населения, подлежащих защите на месте эвакуации;

• создание запасов медикаментов, средств индивидуальной защиты и других средств, необходимых для защиты населения и его жизнеобеспечения;

• разработка оптимальных режимов поведения населения и подготовка его к действиям во время аварии;

• создание на АЭС специальных формирований для ликвидации последствий возможных аварий;

• прогнозирование радиационной разведки;

• периодическое проведение учений по ГО на АЭС и прилегающей территории.

5.5. Защита населения от ионизирующих излучений

Основные меры радиационной защиты, обеспечивающие снижение дозы облучения населения загрязненной территории и вводимые в зависимости от ее величины, включают:

• нормирование облучения;

• добровольное отселение жителей с загрязненных территорий;

• ограничение проживания и функционирования населения на отдельных участках загрязненной территории;

• регулирование возвращения жителей на загрязненные территории;

• дезактивацию отдельных участков загрязненной территории, строений и других объектов;

• систему мер в цикле сельскохозяйственных технологий и производств по снижению содержания радионуклидов в местной растительной и животной пищевой продукции, включая рекомендации для жителей по ведению личных приусадебных хозяйств;

• радиационный контроль и бракераж сельскохозяйственной, рыбной, лесной продукции, а также поставки радиационно чистых продуктов питания и фуража;

• радиационный контроль и бракераж производимых на загрязненных территориях товаров;

• обеспечение безопасных условий труда на загрязненных радионуклидами территориях;

• уменьшение доз медицинского облучения на основе принципа оптимизации, а также снижение уровней природного облучения, в частности, за счет ограничения поступления радона в жилые и производственные помещения.

В случаях завершившегося аварийного облучения населения дальнейшее ограничение накопленной дозы может осуществляться, как правило, только за счет уменьшения содержания радона в помещениях и оптимизации профилактических и диагностических рентгенорадиологических исследований.

Осуществление мер радиационной защиты населения в послеаварийной ситуации может приводить к нежелательному вмешательству в его нормальную жизнь. Защита населения осуществляется с помощью мероприятий (переселение, дезактивация, ограничения в питании, поведении и хозяйственной деятельности и др.), которые могут сопровождаться негативными психологическими эффектами, нарушениями здоровья, экологическим ущербом и значительными материальными затратами. Поэтому при введении этих мер защиты и планировании их объема должны учитываться негативные последствия вмешательства.

Схема организации защиты населения от ионизирующих излучений приведена на рис. 3.

Рис. 3. Схема организации защиты населения от ионизирующего излучения

5.6. Радиационные происшествия в России

Радиационно-опасными объектами в РФ являются 29 энергоблоков на 9 АЭС и 18 энергоблоков строящихся станций, 113 исследовательских ядерных установок, 9 атомных судов с объектами их обеспечения, 13 промышленных предприятий ядерно-топливного цикла (ПЯТЦ), около 13 тыс. других предприятий, осуществляющих деятельность с использованием радиоактивных веществ. Среди аварий, возникающих на промышленных объектах, по объему разрушений и человеческим жертвам исключительно опасны аварии на атомных станциях, где выход из строя энергетических установок (реакторов) с ядерным топливом может привести не только к разрушению больших площадей, но и к образованию ударной волны. Доля атомной электроэнергетики в общем балансе РФ составляет 16,7%. Источником радиационной опасности на атомных станциях являются реакторы энергоблоков, бассейны выдержки ядерного топлива, хранилища жидких и сухих отходов. В потенциально опасных зонах, прилегающих к действующим АЭС, проживает более 4 млн человек. К настоящему времени в мире зафиксировано более 150 аварий на атомных электростанциях (АЭС) с утечкой радиоактивности.

Кроме того, на дне Мирового океана находится шесть затонувших атомных подлодок, девять атомных реакторов, 50 ядерных боеприпасов и одна водородная бомба ВМФ США.

В российской энергетике одной из главных экологических проблем является утилизация радиоактивных отходов (РАО). За 50 лет использования атомной энергии не выработано безопасной системы захоронения и обезвреживания РАО. Все эти годы основным способом избавления от накапливающихся объемов РАО был сброс в моря, океаны, открытые наземные и речные сбросы. Радиоактивные отходы складируются на списанные суда ВМФ, и когда они наполняются, их буксируют в океан и топят. При этом не соблюдаются международные нормы ни по содержимому контейнеров, ни по глубине затопления. Так, недалеко от архипелага Новая Земля обнаружены контейнеры с уровнем радиации 160 Р/ч, затопленные на глубине от 18 до 270 м (вместо положенного минимума 4000 м).

В 1992 году аппарат Президента РФ рассекретил данные о загрязнении северных и дальневосточных морей: за 1959–1992 годы наша страна сбросила в северные моря жидкие радиоактивные отходы суммарной активностью около 20 тыс. кюри и твердые РАО активностью около 2,3 млн кюри; в моря Дальнего Востока – отходы активностью соответственно 12,3 и 6,2 тыс. кюри.

Одной из острых экологических проблем России остается проблема утилизации атомного подводного флота и обращения с РАО и отработанным ядерным топливом на объектах ВМФ. По данным официального доклада Минприроды РФ, с 1996 года из эксплуатации выведена 121 атомная подводная лодка. После запрещения в 1993 году сброса в моря и океаны отходов ядерного топлива (ОЯТ) береговые и плавучие хранилища полностью загружены, часть РАО и ОЯТ складируются на открытых площадках. По экспертным оценкам, очистка ядерных военных комплексов и восстановление нарушенных экосистем потребует не менее 50–60 лет с общими минимальными затратами 300–400 млрд долл. Отходы ядерного топлива накапливаются во время реакции в тепловыделяющих элементах (ТВЭл). Процесс деления в ТВЭл длится несколько лет, поскольку загрузка реакторов ядерным топливом осуществляется, как правило, через три года. За этот период короткоживущие изотопы распадаются, одновременно идет накопление радионуклидов с большим периодом полураспада.

При этом ОЯТ – не просто отходы, а ценнейший материал для переработки. Например, в природном уране содержится 0,7% урана-235, а в ОЯТ – до 1,5%. Переработанные ОЯТ можно использовать как для изготовления свежего ядерного топлива (уран, плутоний), так ив различных отраслях промышленности и медицине. Уран и плутоний, извлеченные из 100 г ОЯТ, по энергетической ценности равны примерно 2 т нефти или 4–8 т угля.

Наша страна до сих пор переживает экологические последствия множества радиационных воздействий:

• 714 ядерных взрывов при испытании ядерного оружия (из них 467 – в Казахстане, 132 – на северном полигоне Новая Земля);

• 183 испытания в атмосфере, отразившиеся на экосистеме Крайнего Севера и Алтая (продолжительность жизни населения региона – 42 года);

• 115 подземных взрывов в различных регионах страны (для создания хранилищ природного газа, с целью глубинного сейсмического зондирования земной коры и т. д.).

При аварии на Чернобыльской АЭС 26 апреля 1986 года выброс радиоактивных отходов составил 63 кг, или 3,5% радионуклидов реактора. Для сравнения: мощность атомной бомбы, сброшенной на Хиросиму, составляла 20 кт с образованием 740 г радиоактивных отходов. Следовательно, авария на ЧАЭС эквивалентна 85 атомным бомбам мощностью по 20 кт. В ходе ликвидации последствий этой аварии была проведена дезактивация 600 населенных пунктов, эвакуировано 115 тыс. человек, йодной профилактикой охвачено 5,4 млн человек, 650 тыс. ликвидаторов получили различные дозы облучения.

В целом радиоактивному заражению подверглись 19 субъектов РФ с населением более 30 млн человек, а также территории 10 государств Европы.

Контрольные вопросы и задания

1. Какие виды ионизирующих излучений вы знаете?

2. Расскажите о механизме воздействия радиации на человека.

3. Какие объекты относятся к радиационно опасным?

4. Дайте характеристику зон объектов (АЭС) по степени опасности для здоровья в случае радиационной аварии.

5. Назовите единицы измерения радиоактивности.

6. Какие дозы облучения являются предельно допустимыми?

7. Охарактеризуйте радиационную безопасность в России.

PAGE   \* MERGEFORMAT 1



 

Другие похожие работы, которые могут вас заинтересовать.
337. Гражданская оборона. Чрезвычайные ситуации и защита от них 49.6 KB
  Характеризуется активностью – количеством вещества распадающегося в единицу времени плотностью радиоактивного загрязнения местности – количеством распадов на 1 м2 ТЭК м2 и концентрацией.08 96 процесс выделения энергии за короткий промежуток времени связанный с мгновенным физикохимическим изменением состояния вещества приводящий к возникновению скачка давления или ударной волны сопровождающийся образованием сжатых газов или паров способных производить работу. Взрывчатые вещества принято разделять на следующие виды: Взрывчатые...
5144. Чрезвычайные ситуации Санкт-Петербурга и Ленинградской области (виды, причины, примеры) 27.84 KB
  Изучить справочную информацию о г. Санкт-Петербурге и Ленинградской области и выявить его географические, климатические и экономические особенности, связанные с риском возникновения чрезвычайных ситуаций.
9423. Принципы и способы коллективной и индивидуальной защиты в условиях ЧС техногенного характера 312.41 KB
  Основной целью создания этой системы было объединение усилий федеральных органов исполнительной власти органов представительной и исполнительной власти субъектов РФ органов местного самоуправления и организаций их сил и средств в области предупреждения и ликвидации чрезвычайных ситуаций природного и техногенного характера защиты от них населения и территорий в мирное время. Задачи РСЧС В соответствии с Федеральным законом О защите населения и территорий от ЧС природного и техногенного характера основными задачами созданной системы...
11610. ОРГАНИЗАЦИЯ МЕДИКО-САНИТАРНОГО ОБЕСПЕЧЕНИЯ НАСЕЛЕНИЯ ПРИ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ ПРИРОДНОГО ТЕХНОГЕННОГО ХАРАКТЕРА 2.32 MB
  Виды и объем медицинской помощи. Этапы медицинской эвакуации. Организация работы бригады специализированной медицинской помощи БрСМП. Организация снабжения медицинским имуществом и медицинской техникой кровью и кровезаменителями.
819. ЧС природного, экологического и техногенного характера, ухудшения экологии, а также угрозы национальной безопасности 36.99 KB
  Серьезными факторами дестабилизации среды жизни человека становятся технические аварии и природные катастрофы. Многие ученые, специалисты указывают на усиление связи между ними и на приобретение многими из них глобально-экологического характера.
844. Создание ситуации успеха в педагогическом взаимодействии с детьми как условие развития детской самооценкиИЙ КОЛЛЕДЖ № 1 КУРСОВАЯ РАБОТА Создание ситуации успеха в педа. 73.21 KB
  Психолого-педагогические аспекты развития самооценки у детей Понятие основные характеристики технологии взаимодействия. Ситуация успеха во взаимодействии с детьми как условие развития самооценки детей. Исследование уровня развития самооценки детей младшего школьного возраста воспитывающихся в Качканарском детском доме.
12079. База данных (БД) «Паразиты позвоночных животных Среднего Поволжья», включающая опасные виды для человека и домашних животных 17.9 KB
  Собраны и систематизированы сведения по паразитам Среднего Поволжья накопленные почти за 100летний период исследований на территории региона. К настоящему времени БД Паразиты позвоночных Среднего Поволжья включает в себя сведения о 832 видах паразитов обнаруженных у 82 видов позвоночных животных: Mstigophor – 5 видов Sporozo – 2 Microsporidi – 3 Cnidosporidi – 64 Ciliophor – 32 Coelentert – 1 Monogene – 54 mphilinid – 1 spidogstre – 1 Tremtod – 309 Cestod – 160 Nemtod – 191 cnthocephl – 10 видов. В качестве программной среды...
12120. Способы геотехнологической переработки природного и техногенного сульфидсодержащего сырья 19.49 KB
  В результате проведенных экспериментов моделирующих длительное взаимодействие искусственных геохимических барьеров с сульфатными растворами никеля и меди и с использованием метода термодинамического моделирования программный комплекс Селектор было показано что термоактивированные хвосты обогащения медноникелевых руд смеси активного кремнезема и карбонатита серпофита и карбонатита являются перспективным материалом обогащаемого слоя при реализации физикохимических геотехнологий как для доизвлечения ценных компонентов так и для...
5420. ПРОГНОЗИРОВАНИЕ И ОБЕСПЕЧЕНИЕ ЗАЩИТЫ ОТ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ ТЕХНОГЕННОГО ХАРАКТЕРАНА ОБЪЕКТАХ АПК 127.07 KB
  Оценка дозовой нагрузки от естественного фона радиации и техногенных источников 1.Определение мощности дозы от точечного источника радиации 13Оценка активности и количества биологически активных изотопов J131 Cs137 Sr90 при аварийном выбросе на АЭС...
16350. -экономической ситуации. 20.95 KB
  Разрабатываются разнообразные программы поддержки развития городов реализуемые как на региональном так и на общенациональном уровнях. Для участия в селективных программах выделяются определенные группы городов-участников объединенных наличием общих социально-экономических проблем. С точки зрения содержательных приоритетов выделяются программы мероприятия ориентированные на выравнивание финансово-бюджетной обеспеченности городов и программы ориентированные на выравнивание социально-экономического развития. В силу этого особенно ценен...
© "REFLEADER" http://refleader.ru/
Все права на сайт и размещенные работы
защищены законом об авторском праве.